检测、量化、追踪新冠病毒,基于
深度学习的自动CT图像分析
目标:开发基于AI的自动CT图像分析工具,并证明它们可以将冠状病毒患者与未患该疾病的人区分开。
数据和方法:包括来自中国疾病感染地区的多个国际数据集。提出了一种利用2D和3D深度学习模型,修改和调整现有AI模型并将其与临床理解相结合的系统。进行了多次回顾性实验,以分析系统在检测可疑COVID-19胸部CT特征中的性能,并使用3D视图来检查评估每位患者随时间推移的疾病进展,并产生“冠状评分”。该研究包括了157名国际患者(中国和美国)的测试集。
结果:胸部CT冠状病毒与非冠状病毒的分类结果为0.996 AUC(95%CI:0.989-1.00),这是在中国控制和感染患者的数据集上的结果。实际使用的结果:灵敏度为98.2%,特异性为92.2%。对于冠状病毒患者,系统可对较小的不透明物(体积,直径)进行定量测量,并在基于切片的“热图”或3D体积显示中可视化较大的不透明物。研究提出的“冠状(Corona)评分”可以衡量疾病随时间的进展。