上海交通大学2020年数学分析真题
证明
令
$F(x)=\int_{a}^{x}f(t)dt,$
则
$F(a)=0,F(b)=\int_{a}^{b}f(x)dx,$
将$F(a),F(b)$分别在$x=\frac{a+b}{2}$泰勒展开:
$\begin{align*}F(a)&=F(\frac{a+b}{2})+F'(\frac{a+b}{2})(\frac{a+b}{2}-a)+\frac{1}{2!}F''(\frac{a+b}{2})(\frac{a+b}{2}-a)^2+\frac{1}{3!}F'''(\xi_1)(\frac{a+b}{2}-a)^3\\\\&=F(\frac{a+b}{2})-f(\frac{a+b}{2})(\frac{b-a}{2})+\frac{1}{2!}f'(\frac{a+b}{2})(\frac{b-a}{2})^2-\frac{1}{3!}f''(\xi_1)(\frac{b-a}{2})^3.\end{align*},$
$\begin{align*}F(b)&=F(\frac{a+b}{2})+F'(\frac{a+b}{2})(b-\frac{a+b}{2})+\frac{1}{2!}F''(\frac{a+b}{2})(b-\frac{a+b}{2})^2+\frac{1}{3!}F'''(\xi_1)(b-\frac{a+b}{2})^3\\\\&=F(\frac{a+b}{2})+f(\frac{a+b}{2})(\frac{b-a}{2})+\frac{1}{2!}f'(\frac{a+b}{2})(\frac{b-a}{2})^2+\frac{1}{3!}f''(\xi_1)(\frac{b-a}{2})^3.\end{align*},$
将两式相减,
$\int_{a}^{b}f(x)dx=F(b)-F(a)=f(\frac{a+b}{2})(b-a)+\frac{f''(\xi_1)+f''(\xi_2)}{48}(b-a)^3$
其中$\xi_1\in[a,\frac{a+b}{2}],\xi_2\in[\frac{a+b}{2},b],$
据Darboux定理,
$\exists \xi\in[\xi_1,\xi_2]\subset [a,b],s.t.$
$2f''(\xi)=f''(\xi_1)+f''(\xi_2),$
代入上式,得
$\int_{a}^{b}f(x)dx=f(\frac{a+b}{2})(b-a)+\frac{f''(\xi)}{24}(b-a)^3.$
命题得证。