II Themes 71
5 Disease Map Reconstruction and Relative Risk Estimation 73
5.1 Introduction to Case Event and Count Likelihoods 73
5.1.1 Poisson ProcessModel 73
5.1.2 Conditional Logistic Model 75
5.1.3 Binomial Model for Count Data 76
5.1.4 Poisson Model for Count Data 76
5.2 Specification of the Predictor in Case Event and Count Models 77
5.2.1 Bayesian LinearModel 79
5.3 Simple Case and Count Data Models with Uncorrelated
RandomEffects 80
5.3.1 Gamma and Beta Models 82
5.3.2 Log-Normal/Logistic-Normal Models 84
5.4 Correlated Heterogeneity Models 84
5.4.1 Conditional Autoregressive (CAR) Models 86
5.4.2 Fully-Specified Covariance Models 90
5.5 ConvolutionModels 91
5.6 Model Comparison and Goodness-of-Fit Diagnostics 92
5.6.1 Residual Spatial Autocorrelation 94
5.7 Alternative RiskModels 96
5.7.1 AutologisticModels 96
5.7.2 Spline-BasedModels 101
5.7.3 Zip Regression Models 102
5.7.4 Ordered and Unordered Multicategory Data 107
5.7.5 Latent Structure Models 108
5.8 Edge Effects 111
5.8.1 Edge Weighting Schemes and McMC Methods 113
5.8.2 Discussion and Extension to Space–Time 115
5.9 Exercises 116
5.9.1 MaximumLikelihood 116
5.9.2 Poisson–Gamma Model: Posterior and Predictive
Inference 117
5.9.3 Poisson-Gamma Model: Empirical Bayes 117
6 Disease Cluster Detection 119
6.1 Cluster Definitions 119
6.1.1 Hot Spot Clustering 121
6.1.2 Clusters as Objects or Groupings 121
6.1.3 Clusters Defined as Residuals 121
6.2 Cluster Detection using Residuals 122
6.2.1 Case Event Data 122
6.2.2 Count Data 126
6.3 Cluster Detection Using PosteriorMeasures 130
6.4 ClusterModels 133
6.4.1 Case Event Data 133
6.4.2 Count Data 143
6.4.3 Markov Connected Component Field (MCCF) Models 148
6.5 Edge Detection andWombling 149
7 Ecological Analysis 151
7.1 General Case of Regression 151
7.2 Biases and Misclassification Error 158
7.2.1 Ecological Biases 158
7.3 Putative HazardModels 165
7.3.1 Case Event Data 166
7.3.2 Aggregated Count Data 172
7.3.3 Spatiotemporal Effects 176
8 Multiple Scale Analysis 185
8.1 Modifiable Areal Unit Problem(MAUP) 185
8.1.1 Scaling Up 185
8.1.2 Scaling Down 187
8.1.3 Multiscale Analysis 187
8.2 Misaligned Data Problem(MIDP) 190
8.2.1 Predictor Misalignment 191
8.2.2 OutcomeMisalignment 198
8.2.3 Misalignment and Edge Effects 200
9 Multivariate Disease Analysis 201
9.1 Notation for Multivariate Analysis 201
9.1.1 Case Event Data 201
9.1.2 Count Data 202
9.2 Two Diseases 202
9.2.1 Case Event Data 202
9.2.2 Count Data 204
9.2.3 Georgia County Level Example (3 Diseases) 206
9.3 Multiple Diseases 207
9.3.1 Case Event Data 209
9.3.2 Count Data 216
9.3.3 Multivariate Spatial Correlation and MCAR Models 219
9.3.4 Georgia Chronic Ambulatory Care-Sensitive
Example 222