Contents
1 Introduction 1
1.1 Markov Chains 1
1.1.1 Examples of Markov Chains 2
1.1.2 The nth-Step Transition Matrix 5
1.1.3 Irreducible Markov Chain and Classifications of States 7
1.1.4 An Analysis of the Random Walk 8
1.1.5 Simulation of Markov Chains with EXCEL 10
1.1.6 Building a Markov Chain Model11
1.1.7 Stationary Distribution of a Finite Markov Chain 14
1.1.8 Applications of the Stationary Distribution 16
1.2 Continuous Time Markov Chain Process 16
1.2.1 A Continuous Two-state Markov Chain 18
1.3 Iterative Methods for Solving Linear Systems 19
1.3.1 Some Results on Matrix Theory 20
1.3.2 Splitting of a Matrix 21
1.3.3 Classical Iterative Methods 22
1.3.4 Spectral Radius 24
1.3.5 Successive Over-Relaxation (SOR) Method 26
1.3.6 Conjugate Gradient Method 26
1.3.7 Toeplitz Matrices 30
1.4 Hidden Markov Models 32
1.5 Markov Decison Process 33
1.5.1 Stationary Policy 35
2 Queueing Systems and the Web 37
2.1 Markovian Queueing Systems 37
2.1.1 An M/M/1/n − 2 Queueing System 37
2.1.2 An M/M/s/n − s − 1 Queueing System 39
2.1.3 The Two-Queue Free System 41
2.1.4 The Two-Queue Overflow System 42
2.1.5 The Preconditioning of Complex Queueing Systems 43
2.2 Search Engines 47
2.2.1 The PageRank Algorithm 49
2.2.2 The Power Method 50
2.2.3 An Example 51
2.2.4 The SOR/JOR Method and the Hybrid Method 52
2.2.5 Convergence Analysis 54
2.3 Summary 58
3 Re-manufacturing Systems 61
3.1 Introduction 61
3.2 An Inventory Model for Returns 62
3.3 The Lateral Transshipment Model 66
3.4 The Hybrid Re-manufacturing Systems 68
3.4.1 The Hybrid System 69
3.4.2 The Generator Matrix of the System 69
3.4.3 The Direct Method 71
3.4.4 The Computational Cost 74
3.4.5 Some Special Cases Analysis 74
3.5 Summary 75
4 Hidden Markov Model for Customers Classification77
4.1 Introduction 77
4.1.1 A Simple Example77
4.2 Parameter Estimation 78
4.3 Extension of the Method 79
4.4 Special Case Analysis 80
4.5 Application to Classification of Customers 82
4.6 Summary 85