全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
3233 5
2010-06-11
Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems) [Paperback]
Ian H. Witten (Author), Eibe Frank (Author)



Editorial Reviews


Review


"This book presents this new discipline in a very accessible form: both as a text to train the next generation of practitioners and researchers, and to inform lifelong learners like myself. Witten and Frank have a passion for simple and elegant solutions. They approach each topic with this mindset, grounding all concepts in concrete examples, and urging the reader to consider the simple techniques first, and then progress to the more sophisticated ones if the simple ones prove inadequate. If you have data that you want to analyze and understand, this book and the associated Weka toolkit are an excellent way to start."
- From the foreword by Jim Gray, Microsoft Research

"It covers cutting-edge, data mining technology that forward-looking organizations use to successfully tackle problems that are complex, highly dimensional, chaotic, non-stationary (changing over time), or plagued by. The writing style is well-rounded and engaging without subjectivity, hyperbole, or ambiguity. I consider this book a classic already!"
- Dr. Tilmann Bruckhaus, StickyMinds.com


Book Description


Highly anticipated second edition of the highly-acclaimed reference on data mining and machine learning.





Product Details
  • Paperback: 560 pages
  • Publisher: Morgan Kaufmann; 2 edition (June 10, 2005)
  • Language: English
  • ISBN-10: 0120884070
  • ISBN-13: 978-0120884070

附件列表

Data Mining~2005.pdf

大小:7.76 MB

只需: 1 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-6-11 08:14:09

Contents

Foreword v

Preface xxiii

Updated and revised content xxvii

Acknowledgments xxix

Part I Machine learning tools and techniques 1

1 What’s it all about? 3

1.1 Data mining and machine learning 4

Describing structural patterns 6

Machine learning 7

Data mining 9

1.2 Simple examples: The weather problem and others 9

The weather problem 10

Contact lenses: An idealized problem 13

Irises: A classic numeric dataset 15

CPU performance: Introducing numeric prediction 16

Labor negotiations: A more realistic example 17

Soybean classification: A classic machine learning success 18

1.3 Fielded applications 22

Decisions involving judgment 22

Screening images 23

Load forecasting 24

Diagnosis 25

Marketing and sales 26

Other applications 28

1.4 Machine learning and statistics 29

1.5 Generalization as search 30

Enumerating the concept space 31

Bias 32

1.6 Data mining and ethics 35

1.7 Further reading 37

2 Input: Concepts, instances, and attributes 41

2.1 What’s a concept? 42

2.2 What’s in an example? 45

2.3 What’s in an attribute? 49

2.4 Preparing the input 52

Gathering the data together 52

ARFF format 53

Sparse data 55

Attribute types 56

Missing values 58

Inaccurate values 59

Getting to know your data 60

2.5 Further reading 60

3 Output: Knowledge representation 61

3.1 Decision tables 62

3.2 Decision trees 62

3.3 Classification rules 65

3.4 Association rules 69

3.5 Rules with exceptions 70

3.6 Rules involving relations 73

3.7 Trees for numeric prediction 76

3.8 Instance-based representation 76

3.9 Clusters 81

3.10 Further reading 824 Algorithms: The basic methods 83

4.1 Inferring rudimentary rules 84

Missing values and numeric attributes 86

Discussion 88

4.2 Statistical modeling 88

Missing values and numeric attributes 92

Bayesian models for document classification 94

Discussion 96

4.3 Divide-and-conquer: Constructing decision trees 97

Calculating information 100

Highly branching attributes 102

Discussion 105

4.4 Covering algorithms: Constructing rules 105

Rules versus trees 107

A simple covering algorithm 107

Rules versus decision lists 111

4.5 Mining association rules 112

Item sets 113

Association rules 113

Generating rules efficiently 117

Discussion 118

4.6 Linear models 119

Numeric prediction: Linear regression 119

Linear classification: Logistic regression 121

Linear classification using the perceptron 124

Linear classification using Winnow 126

4.7 Instance-based learning 128

The distance function 128

Finding nearest neighbors efficiently 129

Discussion 135

4.8 Clustering 136

Iterative distance-based clustering 137

Faster distance calculations 138

Discussion 139

4.9 Further reading 139
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-11 08:14:17
昨天10个论坛币在另一个帖子上下的... 我亏了...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-11 08:14:50

5 Credibility: Evaluating what’s been learned 143

5.1 Training and testing 144

5.2 Predicting performance 146

5.3 Cross-validation 149

5.4 Other estimates 151

Leave-one-out 151

The bootstrap 152

5.5 Comparing data mining methods 153

5.6 Predicting probabilities 157

Quadratic loss function 158

Informational loss function 159

Discussion 160

5.7 Counting the cost 161

Cost-sensitive classification 164

Cost-sensitive learning 165

Lift charts 166

ROC curves 168

Recall–precision curves 171

Discussion 172

Cost curves 173

5.8 Evaluating numeric prediction 176

5.9 The minimum description length principle 179

5.10 Applying the MDL principle to clustering 183

5.11 Further reading 184

6 Implementations: Real machine learning schemes 187

6.1 Decision trees 189

Numeric attributes 189

Missing values 191

Pruning 192

Estimating error rates 193

Complexity of decision tree induction 196

From trees to rules 198

C4.5: Choices and options 198

Discussion 199

6.2 Classification rules 200

Criteria for choosing tests 200

Missing values, numeric attributes 201

Generating good rules 202

Using global optimization 205

Obtaining rules from partial decision trees 207

Rules with exceptions 210

Discussion 213

6.3 Extending linear models 214

The maximum margin hyperplane 215

Nonlinear class boundaries 217

Support vector regression 219

The kernel perceptron 222

Multilayer perceptrons 223

Discussion 235

6.4 Instance-based learning 235

Reducing the number of exemplars 236

Pruning noisy exemplars 236

Weighting attributes 237

Generalizing exemplars 238

Distance functions for generalized exemplars 239

Generalized distance functions 241

Discussion 242

6.5 Numeric prediction 243

Model trees 244

Building the tree 245

Pruning the tree 245

Nominal attributes 246

Missing values 246

Pseudocode for model tree induction 247

Rules from model trees 250

Locally weighted linear regression 251

Discussion 253

6.6 Clustering 254

Choosing the number of clusters 254

Incremental clustering 255

Category utility 260

Probability-based clustering 262

The EM algorithm 265

Extending the mixture model 266

Bayesian clustering 268

Discussion 270

6.7 Bayesian networks 271

Making predictions 272

Learning Bayesian networks 276

Specific algorithms 278

Data structures for fast learning 280

Discussion 283

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-11 08:15:41

7 Transformations: Engineering the input and output 285

7.1 Attribute selection 288

Scheme-independent selection 290

Searching the attribute space 292

Scheme-specific selection 294

7.2 Discretizing numeric attributes 296

Unsupervised discretization 297

Entropy-based discretization 298

Other discretization methods 302

Entropy-based versus error-based discretization 302

Converting discrete to numeric attributes 304

7.3 Some useful transformations 305

Principal components analysis 306

Random projections 309

Text to attribute vectors 309

Time series 311

7.4 Automatic data cleansing 312

Improving decision trees 312

Robust regression 313

Detecting anomalies 314

7.5 Combining multiple models 315

Bagging 316

Bagging with costs 319

Randomization 320

Boosting 321

Additive regression 325

Additive logistic regression 327

Option trees 328

Logistic model trees 331

Stacking 332

Error-correcting output codes 334

7.6 Using unlabeled data 337

Clustering for classification 337

Co-training 339

EM and co-training 340

7.7 Further reading 341

8 Moving on: Extensions and applications 345

8.1 Learning from massive datasets 346

8.2 Incorporating domain knowledge 349

8.3 Text and Web mining 351

8.4 Adversarial situations 356

8.5 Ubiquitous data mining 358

8.6 Further reading 361

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-11 08:16:02

Part II The Weka machine learning workbench 363

9 Introduction to Weka 365

9.1 What’s in Weka? 366

9.2 How do you use it? 367

9.3 What else can you do? 368

9.4 How do you get it? 368

10 The Explorer 369

10.1 Getting started 369

Preparing the data 370

Loading the data into the Explorer 370

Building a decision tree 373

Examining the output 373

Doing it again 377

Working with models 377

When things go wrong 378

10.2 Exploring the Explorer 380

Loading and filtering files 380

Training and testing learning schemes 384

Do it yourself: The User Classifier 388

Using a metalearner 389

Clustering and association rules 391

Attribute selection 392

Visualization 393

10.3 Filtering algorithms 393

Unsupervised attribute filters 395

Unsupervised instance filters 400

Supervised filters 401

10.4 Learning algorithms 403

Bayesian classifiers 403

Trees 406

Rules 408

Functions 409

Lazy classifiers 413

Miscellaneous classifiers 414

10.5 Metalearning algorithms 414

Bagging and randomization 414

Boosting 416

Combining classifiers 417

Cost-sensitive learning 417

Optimizing performance 417

Retargeting classifiers for different tasks 418

10.6 Clustering algorithms 418

10.7 Association-rule learners 419

10.8 Attribute selection 420

Attribute subset evaluators 422

Single-attribute evaluators 422

Search methods 423

11 The Knowledge Flow interface 427

11.1 Getting started 427

11.2 The Knowledge Flow components 430

11.3 Configuring and connecting the components 431

11.4 Incremental learning 433

12 The Experimenter 437

12.1 Getting started 438

Running an experiment 439

Analyzing the results 440

12.2 Simple setup 441

12.3 Advanced setup 442

12.4 The Analyze panel 443

12.5 Distributing processing over several machines 445

13 The command-line interface 449

13.1 Getting started 449

13.2 The structure of Weka 450

Classes, instances, and packages 450

The weka.core package 451

The weka.classifiers package 453

Other packages 455

Javadoc indices 456

13.3 Command-line options 456

Generic options 456

Scheme-specific options 458

14 Embedded machine learning 461

14.1 A simple data mining application 461

14.2 Going through the code 462

main() 462

MessageClassifier() 462

updateData() 468

classifyMessage() 468

15 Writing new learning schemes 471

15.1 An example classifier 471

buildClassifier() 472

makeTree() 472

computeInfoGain() 480

classifyInstance() 480

main() 481

15.2 Conventions for implementing classifiers 483

References 485

Index 505

About the authors 525
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群