哪位大侠帮忙看看,我检查了很多很多遍,就是找不到没有附初始值的变量。。。但winbugs 总是提示有 uninitialized variables!!!! 我不想要winbugs 自动生成初始值
先谢谢啦
code:
model
{for(i in 1: N) {
# generate data
boxoffice[i] ~ dnorm(ubo[i], tau[1])
screen[i] ~ dnorm(uscr[i], tau[2])
ad[i] ~ dnorm(uad[i], tau[3])
meancc[i] ~ dnorm(cc[i], varn[1])
meansh[i] ~ dnorm(sh[i], varn[2])
jaccard[i] ~ dnorm(se[i], varn[3])
ability[i] ~ dnorm(-1, z)
#regress network attributes on latent V
cc[i]<- alpha[1]+gamma[1]*ability[i]+res[i,1]
sh[i]<- alpha[2]+gamma[2]*ability[i]+res[i,2]
se[i]<- alpha[3]+gamma[3]*ability[i]+res[i,3]
# regress bo, ad and screen on predictors
log(ubo[i])<-beta[1]+lamda[1]*ability[i]+delta[1]*res[i,1]+theta[1]*res[i,2]+zeta[1]*res[i,3] + eta[1]*log(screen[i])+ phi[1]*log(ad[i])+ pi[1]*comp[i] +kappa[1]*log(budget[i])
log(uscr[i])<- beta[2]+lamda[2]*ability[i]+delta[2]*res[i,1]+theta[2]*res[i,2]+zeta[2]*res[i,3]+kappa[2]*log(budget[i])
log(uad[i])<- beta[3]+lamda[3]*ability[i]+delta[3]*res[i,2]+theta[3]*res[i,2]+zeta[3]*res[i,3]+kappa[3]*log(budget[i])
}
# priors on regression parameters and precisions
for(i in 1: N) {res[i,1:3] ~ dmnorm (mean[1:3], tau.res[1:3, 1:3])}
tau.res[1:3, 1:3] ~ dwish(R[1:3,1:3],3)
R[1,1]<-1
R[2,2]<-1
R[3,3]<-1
R[2,1]<-R[1,2]
R[1,2]<-0
R[1,3]<-R[3,1]
R[3,1]<-0
R[2,3]<-R[3,2]
R[3,2]<-0
for (i in 1:3) {mean[i] <- 0}
for (j in 1:3) {varn[j] ~ dgamma(1, 0.001)}
for (j in 1:3) {tau[j] ~ dgamma(0.5, 0.5)}
z ~ dgamma(0.5, 0.5)
for (j in 1:3) {alpha[j] ~ dnorm(0,0.001);
gamma[j] ~ dnorm(0,0.001);
beta[j] ~ dnorm(0, 0.001);
lamda[j] ~ dnorm(0,0.001);
delta[j]~dnorm(0,0.001);
theta[j]~dnorm(0,0.001);
zeta[j]~dnorm(0, 0.001);
kappa[j]~dnorm(0,0.001)}
eta[1] ~dnorm(0,0.001)
phi[1] ~dnorm(0,0.001)
pi[1] ~dnorm(0,0.001)
}
初始值 :Initial values for chain 1:
list(alpha=c(0,0,0), gamma=c(0,0,0), beta=c(0,0,0),lamda=c(0,0,0), delta=c(0,0,0), theta=c(0,0,0), zeta=c(0,0,0), kappa=c(0,0,0), eta=c(0), phi=c(0), pi=c(0), z=1, tau=c(1,1,1), varn=c(1,1,1), tau.res=structure(.Data=c(1.0E-6,0,0,0,1.0E-6,0,0,0,1.0E-6),.Dim=c(3,3)))
Initial values for chain 2:
list(alpha=c(1,1,1), gamma=c(1,1,1), beta=c(1,1,1),lamda=c(2,2,2), delta=c(2,2,2), theta=c(2,2,2), zeta=c(2,2,2), kappa=c(2,2,2), eta=c(0), phi=c(0), pi=c(0), z=2, tau=c(0.5,0.5,0.5), varn=c(0.5,0.5,0.5), tau.res=structure(.Data=c(0.1,0,0,0,0.1,0,0,0,0.1),.Dim=c(3,3)))