全部版块 我的主页
论坛 经管考试 九区 经管考证 金融类
3179 10
2010-07-21
悬赏 10 个论坛币 已解决
147. The amount of a claim that a car insurance company pays out follows an exponential distribution. By imposing a deductible of d, the insurance company reduces the expected claim payment by 10%. Calculate the percentage reduction on the variance of the claim payment.
(A) 1%
(B) 5%
(C) 10%
(D) 20%
(E) 25%

147. Key: A
Let X denote the amount of a claim before application of the deductible. Let Y denote the amount of a claim payment after application of the deductible. Let
k be the mean of X, which because X is exponential, implies that k^2 is the variance of X and E(X^2)=2k^2. By the memoryless property of the exponential distribution, the conditional distribution of the portion of a claim above the deductible given that the claim exceeds the deductible is an exponential distribution with mean k. Given that E(Y)=0.9k, this implies that the probability of a claim exceeding the deductible is 0.9 and thus E(Y^2)=0.9*2k^2=1.8k^2.

我不太理解为什么 E(Y^2)=0.9*2k^2=1.8k^2。麻烦大家赐教~

最佳答案

Enthuse 查看完整内容

Keep in mind: Y = 0 if X d Then: E(Y^2) = Pr(X>d) E(Y^2| X>d) + Pr(Xd) + 0 = 0.9 E((X-d)^2| X>d) = 0.9 E(X^2) = 0.9 * 2k^2 = 1.8 k^2
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-7-21 10:44:36
ahixyz 发表于 2010-7-21 10:44
147. The amount of a claim that a car insurance company pays out follows an exponential distribution. By imposing a deductible of d, the insurance company reduces the expected claim payment by 10%. Calculate the percentage reduction on the variance of the claim payment.
(A) 1%
(B) 5%
(C) 10%
(D) 20%
(E) 25%

147. Key: A
Let X denote the amount of a claim before application of the deductible. Let Y denote the amount of a claim payment after application of the deductible. Let
k be the mean of X, which because X is exponential, implies that k^2 is the variance of X and E(X^2)=2k^2. By the memoryless property of the exponential distribution, the conditional distribution of the portion of a claim above the deductible given that the claim exceeds the deductible is an exponential distribution with mean k. Given that E(Y)=0.9k, this implies that the probability of a claim exceeding the deductible is 0.9 and thus E(Y^2)=0.9*2k^2=1.8k^2.

我不太理解为什么 E(Y^2)=0.9*2k^2=1.8k^2。麻烦大家赐教~
Keep in mind:
Y = 0 if X<=d
Y = X-d if X > d

Then:
E(Y^2)
= Pr(X>d) E(Y^2| X>d) + Pr(X<=d) * E(Y^2| X<=d)
=Pr(X>d) E(Y^2| X>d) + 0
= 0.9 E((X-d)^2| X>d)
= 0.9 E(X^2)
= 0.9 * 2k^2
= 1.8 k^2
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-21 10:50:39
楼主 辛苦了 啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-21 11:31:54
我瞎说一个啊,你看对不对。。。
E(x)=∫(0-无穷)P(X>x)dx
E(x^2)=∫(0-无穷)P(X^2>x)d(x^2)
又因为exponential dist.的无记忆性,得出E(x^2)=2[E(x)]^2,这是成比例的
所以,若E(x)=.9*k,那么,E(x^2)就等于.9*2*k^2
欢迎拍砖^ ^
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-21 15:40:31
感谢LS提供的思路,但我感觉好像不太对。。。

不知还有高人提供见解吗?非常感谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-7-21 16:03:38
lz能否斧正一下?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群