很惊讶,一个很基本的数分题,居然有那么多同学搞错,看来祖国的数分教育力度不够啊。
这个错误就是,很多同学居然认为,一个光滑函数f(x),挖去一点x0使之不连续之后,f'(x0)还是存在,并且其导数值还不变。
事实上,x0处导数定义为:f'(x0)=lim [f(x0+h)-f(x0)] / h, 极限令h趋零取得。如果f(x)在x0不连续,那么左边的极限式的分子趋于一个非零常数,而分母趋零,从而左侧极限根本不存在,也就是说导数f'(x0)不存在。
此外,其实我们完全可以从f'(x0)存在推出f(x)在x0处点态连续。这是数分的基本练习题。
令人震惊的是,不是滥竽充数的同学自己不懂,还要煞有其事地向该贴楼主“指点迷津”,岂不误人子弟?
原帖地址:
http://www.pinggu.org/bbs/thread-889601-1-1.html