Handbook of Modern Item Response Theory
Item response theory has become an essential component in the toolkit of every researcher in the behavioral sciences. It provides a powerful means to study individual responses to a variety of stimuli, and the methodology has been extended and developed to cover many different models of interaction. This volume presents a wide-ranging handbook to item response theory - and its applications to educational and psychological testing. It will serve as both an introduction to the subject and also as a comprehensive reference volume for practitioners and researchers. It is organized into six major sections: the nominal categories model, models for response time or multiple attempts on items, models for multiple abilities or cognitive components, nonparametric models, models for nonmonotone items, and models with special assumptions. Each chapter in the book has been written by an expert of that particular topic, and the chapters have been carefully edited to ensure that a uniform style of notation and presentation is used throughout. As a result, all researchers whose work uses item response theory will find this an indispensable companion to their work and it will be the subject's reference volume for many years to come.
Multivariate and mixture distribution Rasch models
This volume covers extensions of the Rasch model, one of the most researched and applied models in educational research and social science. This collection contains 22 chapters by some of the most recognized international experts in the field. They cover topics ranging from general model extensions to applications in fields as diverse as cognition, personality, organizational and sports psychology, and health sciences and education.
The Rasch model is designed for categorical data, often collected as examinees' responses to multiple tasks such as cognitive items from psychological tests or from educational assessments. The Rasch model's elegant mathematical form is suitable for extensions that allow for greater flexibility in handling complex samples of examinees and collections of tasks from different domains. In these extensions, the Rasch model is enhanced by additional structural elements that either account for differences between diverse populations or for differences among observed variables.
Research on extending well-known statistical tools like regression, mixture distribution, and hierarchical linear models has led to the adoption of Rasch model features to handle categorical observed variables. We maintain both perspectives in the volume and show how these merged models—Rasch models with a more complex item or population structure—are derived either from the Rasch model or from a structural model, how they are estimated, and where they are applied.
项目反应理论与应用
中文的,免费送了!