P1. 1. Introduction and Probability Review.flv
P2. 2. More Review; The Bernoulli Process.flv
P3. 3. Law of Large Numbers, Convergence.flv
P4. 4. Poisson the Perfect Arrival Process.flv
P5. 5. Poisson Combining and Splitting.flv
P6. 6. From Poisson to Markov.flv
P7. 7. Finite-state Markov Chains; The Matrix Approach.flv
P8. 8. Markov Eigenvalues and Eigenvectors.flv
P9. 9. Markov Rewards and Dynamic Programming.flv
P9. 9. Markov Rewards and Dynamic Programming[00].mp4
P9. 9. Markov Rewards and Dynamic Programming[01].mp4
P10. 10. Renewals and the Strong Law of Large Numbers.flv
P11. 11. Renewals Strong Law and Rewards.flv
P12. 12. Renewal Rewards, Stopping Trials, and Wald s Inequal.flv
P13. 13. Little, M G 1, Ensemble Averages.flv
P14. 14. Review.flv
P15. 15. The Last Renewal.flv
P16. 16. Renewals and Countable-state Markov.flv
P17. 17. Countable-state Markov Chains.flv
P18. 18. Countable-state Markov Chains and Processes.flv
P19. 19. Countable-state Markov Processes.flv
P20. 20. Markov Processes and Random Walks.flv
P21. 21. Hypothesis Testing and Random Walks.flv
P22. 22. Random Walks and Thresholds.flv
P23. 23. Martingales Plain, Sub, and Super.flv
P24. 24. Martingales Stopping and Converging.flv
P25. 25. Putting It All Together.flv