好的,万分感谢啊,不过这个模型还是可以做LSTAR模型的,isLinear检验的仅仅是
“Using default threshold variable: thDelay=0”
> library(tsDyn)
> svpdx1 =read.table("m.txt", header = TRUE);
> y=svpdx1$m2
> y
[1] 4.678046 25.864895 26.321201 21.249118 15.900649 18.735037 34.839024
[8] 25.386489 29.219643 22.849062 22.379741 18.316832 27.974895 26.528477
[15] 31.276486 37.312023 34.529817 29.466797 25.257197 19.580787 14.840376
[22] 14.736983 12.269493 13.579229 19.856236 19.634701 15.500372 17.570000
[29] 16.950000 16.700000 17.820000 27.700000
> svpdx2 =read.table("mzh.txt", header = TRUE);
> x=svpdx2$dm
> x
[1] 0.4563057 -5.0720827 -5.3484693 2.8343885 16.1039869 -9.4525352
[7] 3.8331535 -6.3705804 -0.4693215 -4.0629090 9.6580637 -1.4464183
[13] 4.7480087 6.0355369 -2.7822062 -5.0630191 -4.2096000 -5.6764102
[19] -4.7404113 -0.1033927 -2.4674896 1.3097354 6.2770067 -0.2215349
[25] -4.1343289 2.0696282 -0.6200000 -0.2500000 1.1200000 9.8800000
> mod=star(y, m=2, d=1,thVar=x, trace=TRUE, control=list(3000))
Testing linearity... p-Value = 7.035431e-15
The series is nonlinear. Incremental building procedure:
Building a 2 regime STAR.
Performing grid search for starting values...
Starting values fixed: gamma = 40 , th = 2.836254 ; SSE = 171.8763
Optimization algorithm converged
Optimized values fixed for regime 2 : gamma = 40.0004 , th = 2.842359
Testing for addition of regime 3.
Estimating gradient matrix...
Done. Computing the test statistic...
Done. Regime 3 is needed (p-Value = 3.669726e-08 ).
Adding regime 3 .
Fixing good starting values for regime 3 ...
Reordering regimes...
Estimating parameters of regime 3 ...
Optimized values fixed for regime 3 : gamma = 41.76118 , th = 6.513988
Optimization algorithm converged
Optimized linear values:
3.220247 0.832652 -0.1018466
0.5934429 0.4479709 -0.1300669
-96.12018 6.00583 -0.3571657
Ok.
Testing for addition of regime 4 .
Estimating gradient matrix...
Computing the test statistic...
Regime 4 is needed (p-Value = 1.668348e-25 ).
Adding regime 4 .
Fixing good starting values for regime 4 ...
Reordering regimes...
Estimating parameters of regime 4 ...
Optimized values fixed for regime 4 : gamma = 45.94539 , th = 10.64555
Optimization algorithm converged
Optimized linear values:
-1223.773 0.9989231 0.001131645
2450.004 0.002154858 -0.002266246
-0.000291771 1.323034e-05 5.945269e-06
8.071782e-07 1.512423e-05 1.283766e-05
Ok.
Testing for addition of regime 5 .
Estimating gradient matrix...
Computing the test statistic...
Regime 5 is needed (p-Value = 7.299121e-05 ).
Adding regime 5 .
Fixing good starting values for regime 5 ...
Reordering regimes...
Estimating parameters of regime 5 ...
Optimized values fixed for regime 5 : gamma = 40.19385 , th = 12.99012
Optimization algorithm converged
Optimized linear values:
-87770.04 0.9999943 -1.059852e-06
175536.9 1.140156e-05 2.120564e-06
8.209452e-06 4.957738e-06 -6.154125e-06
-1.467837e-06 -5.366139e-06 6.189698e-06
-3.195256e-07 -6.826985e-06 8.100021e-06
Ok.
Testing for addition of regime 6 .
Estimating gradient matrix...
Computing the test statistic...
Regime 6 is NOT accepted (p-Value = 0.9999734 ).
Finished building a MRSTAR with 5 regimes
>
92# epoh