全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 金融工程(数量金融)与金融衍生品
6308 14
2010-10-04
zjbk90245l.jpg
《马尔科夫过程导论》讲述了:To some extent, it would be accurate to summarize the contents of this book as an intolerably protracted description of what happens when either one raises a transition probability matrix P (i.e., all entries (P)o are nonnegative and each row of P sums to 1) to higher and higher powers or one exponentiates R(P - I), where R is a diagonal matrix with non-negative entries. Indeed, when it comes right down to it, that is all that is done in this book. However, I, and others of my ilk, would take offense at such a dismissive characterization of the theory of Markov chains and processes with values in a countable state space, and a primary goal of mine in writing this book was to convince its readers that our offense would be warranted
Preface.
    Chapter1 RandomWalksAGoodPlacetoBegin
    1.1.NearestNeighborRandomWlalksonZ
    1.1.1.DistributionatTimen
    1.1.2.PassageTimesviatheReflectionPrinciple
    1.1.3.SomeRelatedComputations
    1.1.4.TimeofFirstReturn
    1.1.5.PassageTimesviaFunctionalEquations
    1.2.RecurrencePropertiesofRandomWalks
    1.2.1.RandomWalksonZd
    1.2.2.AnElementaryRecurrenceCriterion
    1.2.3.RecurrenceofSymmetricRandomWalkinZ2
    1.2.4.nansienceinZ3
    1.3.Exercises
   
    Chapter2 Doeblin'STheoryforMarkovChains
    2.1.SomeGeneralities
    2.1.1.ExistenceofMarkovChains
    2.1.2.TransionProbabilities&ProbabilityVectors
    2.1.3.nansitionProbabilitiesandFunctions
    2.1.4.TheMarkovProperty
    2.2.Doeblin'STheory
    2.2.1.Doeblin'SBasicTheorem
    2.2.2.ACoupleofExtensions
    2.3.ElementsofErgodicTheory
    2.3.1.TheMeanErgodicTheorem
    2.3.2.ReturnTimes
    2.3.3.Identificationofπ
    2.4.Exercises
   
    Chapter3 MoreabouttheErgodicTheoryofMarkovChains
    3.1.ClassificationofStates
    3.1.1.Classification,Recurrence,andTransience
    3.1.2.CriteriaforRecurrenceandTransmnge
    3.1.3.Periodicity
    3.2.ErgodicTheorywithoutDoeblin
    3.2.1.ConvergenceofMatrices
    3.2.2.AbelConvergence
    3.2.3.StructureofStationaryDistributions
    3.2.4.ASmallImprovement
    3.2.5.TheMcanErgodicTheoremAgain
    3.2.6.ARefinementinTheAperiodicCase
    3.2.7.PeriodicStructure
    3.3.Exercises
   
    Chapter4 MarkovProcessesinContinuousTime
    4.1.PoissonProcesses
    4.1.1.TheSimplePoissonProcess
    4.1.2.CompoundPoissonProcessesonZ
    4.2.MarkovProcesseswithBoundedRates
    4.2.1.BasicConstruction
    4.2.2.TheMarkovProperty
    4.2.3.TheQ-MatrixandKolmogorov'SBackwardEquation
    4.2.4.Kolmogorov'SForwardEquation
    4.2.5.SolvingKolmogorov'SEquation
    4.2.6.AMarkovProcessfromitsInfinitesimalCharacteristics..
    4.3.UnboundedRates
    4.3.1.Explosion
    4.3.2.CriteriaforNon.explosionorExplosion
    4.3.3.WhattoDoWhenExplosionOccurs
    4.4.ErgodicProperties
    4.4.1.ClassificationofStates
    4.4.2.StationaryMeasuresandLimitTheorems
    4.4.3.Interpretingπii
    4.5.Exercises
   
    Chapter5 ReversibleMarkovProeesses
    5.1.R,eversibleMarkovChains
    5.1.1.ReversibilityfromInvariance
    5.1.2.MeasurementsinQuadraticMean
    5.1.3.TheSpectralGap
    5.1.4.ReversibilityandPeriodicity
    5.1.5.RelationtoConvergenceinVariation
    5.2.DirichletFormsandEstimationofβ
    5.2.1.TheDirichletFormandPoincar4'SInequality
    5.2.2.Estimatingβ+
    5.2.3.Estimatingβ-
    5.3.ReversibleMarkovProcessesinContinuousTime
    5.3.1.CriterionforReversibility
    5.3.2.ConvergenceinL2(π)forBoundedRates
    5.3.3.L2(π)ConvergenceRateinGeneral
    5.3.4.Estimating
    5.4.GibbsStatesandGlauberDynamics
    5.4.1.Formulation
    5.4.2.TheDirichletForm
    5.5.SimulatedAnnealing
    5.5.1.TheAlgorithm
    5.5.2.ConstructionoftheTransitionProbabilities
    5.5.3.DescriptionoftheMarkovProcess
    5.5.4.ChoosingaCoolingSchedule
    5.5.5.SmallImprovements
    5.6.Exercises
   
    Chapter6 SomeMildMeasureTheory
    6.1.ADescriptionofLebesgue'sMeasureTheory
    6.1.1.MeasureSpaces
    6.1.2.SomeConsequencesofCountableAdditivity
    6.1.3.Generatinga-Algebras
    6.1.4.MeasurableFunctions
    6.1.5.LebesgueIntegration
    6.1.6.StabilityPropertiesofLebesgueIntegration
    6.1.7.LebesgueIntegrationinCountableSpaces
    6.1.8.Fubini'sTheorem
    6.2.ModelingProbability
    6.2.1.ModelingInfinitelyManyTossesofaFairCoin
    6.3.IndependentRandomVariables
    6.3.1.ExistenceofLotsofIndependentRandomVariables
    6.4.ConditionalProbabilitiesandExpectations
    6.4.1.ConditioningwithRespecttoRandomVariables
    Notation
    References
    Index
    ……
An Introduction to Markov Processes.rar
大小:(5.95 MB)

只需: 2 个论坛币  马上下载

本附件包括:

  • GTM230.An.Introduction.to.Markov.Processes,.Stroock,.D.W..(马尔可夫过程引论).djvu


DJVU格式 很清晰
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-10-4 18:56:22
学习一下。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-10-20 16:15:08
楼主,这个是英文原版是吧?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-10-20 20:38:03
学习一下,谢谢楼主分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-12 18:40:30
正在学习当中,感谢楼主分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-11-12 20:35:11
谢谢分享,下载学习。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群