全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SAS专版
1890 1
2010-10-14
在网上搜了,在SAS帮助里面差了,都找不到结果。

请高手指点。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-10-14 21:18:11
fz0044223 发表于 2010-10-14 19:40
在网上搜了,在SAS帮助里面差了,都找不到结果。

请高手指点。
It is done within the SAS/ETS proc model of GMM estimation.

data tmp;
do i = 1 to 300;
x=rannor(
890);
x2=x+rannor(
890);
x3=x+rannor(
890);
x4=x+rannor(
890);
y=
1+1*x+rannor(890);
output;
end;
run;

proc model data=tmp;
y = a * x + b;
eq.two = resid.y**
2 - sigma**2;
fit y two/ gmm;
instruments x x2 x3 x4;
run;
quit;

The reported value of OBJECTIVE*N is test statistics with chi-square distribution with df=r-p

Testing Over-Identifying Restrictions



Let r be the number of unique instruments times the number of equations. The value r represents the number of orthogonality conditions imposed by the GMM method. Under the assumptions of the GMM method, r-p linearly independent combinations of the orthogonality should be close to zero. The GMM estimates are computed by setting these combinations to zero. When r exceeds the number of parameters to be estimated, the OBJECTIVE*N, reported at the end of the estimation, is an asymptoticly valid statistic to test the null hypothesis that the over-identifying restrictions of the model are valid. The OBJECTIVE*N is distributed as a chi-square with r-p degrees of freedom (Hansen 1982, p. 1049).
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群