上海交通大学2015年数学分析试题
证明
由已知条件,可得
$\displaystyle f_x(x,y),f_y(x,y),$
存在。
设
$\displaystyle F(\Delta x,\Delta y)=(f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y))-(f(x+\Delta x,y)-f(x,y)),$
由定义得
$\displaystyle \begin{align*}\because f_{xy}(x,y)&=\displaystyle \lim_{\Delta y\rightarrow 0}\frac{\displaystyle \lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x,y+\Delta y)-f(x,y+\Delta y)}{\Delta x}-\lim_{\Delta x\rightarrow 0}\frac{f(x+\Delta x,y)-f(x,y)}{\Delta x}}{\Delta y}\\\\&=\lim_{\Delta y\rightarrow 0}\lim_{\Delta x\rightarrow 0}\frac{1}{\Delta y\Delta x}F(\Delta x,\Delta y),\end{align*}$
同样有
$\displaystyle f_{yx}(x,y)=\lim_{\Delta x\rightarrow 0}\lim_{\Delta y\rightarrow 0}\frac{1}{\Delta x\Delta y}F(\Delta x,\Delta y),$
$\displaystyle \therefore f_{xy}(x,y)=f_{yx}(x,y). $ (1)
又由已知, $\displaystyle f_{xy}(x,y)$在$(0,0)$连续,故
$\displaystyle \forall \epsilon> 0,\exists \delta > 0,|\Delta x| < \delta ,|\Delta y|< \delta ,s.t.$
$\displaystyle |f_{xy}(x,y)-f_{xy}(0,0)|< \epsilon .$
由(1)式,此时有
$\displaystyle |f_{yx}(x,y)-f_{xy}(0,0)|< \epsilon .$
$\displaystyle \Rightarrow f_{xy}(0,0)=f_{yx}(0,0).$