全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
2073 1
2010-12-12
Warren B. Powell  December 8, 2009
Approximate dynamic programming is a powerful class of algorithmic strategies for solving stochastic
optimization problems where optimal decisions can be characterized using Bellman's optimality equa-
tion, but where the characteristics of the problem make solving Bellman's equation computationally
intractable. This brief chapter provides an introduction to the basic concepts of approximate dy-
namic programming while building bridges between the different erent communities that have contributed
to this field. We cover basic approximate value iteration (temporal difference learning), policy ap-
proximation, and a brief introduction to strategies for approximating value functions. We cover
Q-learning, and the use of the post-decision state for solving problems with vector-valued decisions.
The approximate linear programming method is introduced, along with a discussion of stepsize se-
lection issues. The presentation closes with a discussion of some practical issues that arise in the
implementation of ADP techniques.
附件列表

Approximate Dynamic Programming II.pdf

大小:205.03 KB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2014-5-24 23:28:25
坑了,10个币,google直接有免费现成的。

http://www.castlelab.princeton.edu/Papers/EORMS-ADP_Algorithms_Dec72009.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群