=============================================================
/* Author : Daniel tulps liu */
=============================================================
[ 1 ] require package
> library(rstan)
> library(ggplot2)
> library(foreign)
>
> sesame <- read.dta("sesame.dta")
> attach(sesame)
>
> ## Rename variables of interest
> watched <- regular
> encouraged <- encour
> y <- postlet
>
> ## Instrumental variables estimate (sesame_one_pred_a.stan)
> ## lm (watched ~ encouraged)
>
> dataList.1 <- list(N=length(watched), watched=watched,encouraged=encouraged)
> sesame_one_pred_a.sf1 <- stan(file='sesame_one_pred_a.stan', data=dataList.1,
+ iter=1000, chains=4)
SAMPLING FOR MODEL 'sesame_one_pred_a' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.001 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.065 seconds (Warm-up)
Chain 1: 0.051 seconds (Sampling)
Chain 1: 0.116 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'sesame_one_pred_a' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 1000 [ 0%] (Warmup)
Chain 2: Iteration: 100 / 1000 [ 10%] (Warmup)
Chain 2: Iteration: 200 / 1000 [ 20%] (Warmup)
Chain 2: Iteration: 300 / 1000 [ 30%] (Warmup)
Chain 2: Iteration: 400 / 1000 [ 40%] (Warmup)
Chain 2: Iteration: 500 / 1000 [ 50%] (Warmup)
Chain 2: Iteration: 501 / 1000 [ 50%] (Sampling)
Chain 2: Iteration: 600 / 1000 [ 60%] (Sampling)
Chain 2: Iteration: 700 / 1000 [ 70%] (Sampling)
Chain 2: Iteration: 800 / 1000 [ 80%] (Sampling)
Chain 2: Iteration: 900 / 1000 [ 90%] (Sampling)
Chain 2: Iteration: 1000 / 1000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 0.049 seconds (Warm-up)
Chain 2: 0.05 seconds (Sampling)
Chain 2: 0.099 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'sesame_one_pred_a' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 0 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 1000 [ 0%] (Warmup)
Chain 3: Iteration: 100 / 1000 [ 10%] (Warmup)
Chain 3: Iteration: 200 / 1000 [ 20%] (Warmup)
Chain 3: Iteration: 300 / 1000 [ 30%] (Warmup)
Chain 3: Iteration: 400 / 1000 [ 40%] (Warmup)
Chain 3: Iteration: 500 / 1000 [ 50%] (Warmup)
Chain 3: Iteration: 501 / 1000 [ 50%] (Sampling)
Chain 3: Iteration: 600 / 1000 [ 60%] (Sampling)
Chain 3: Iteration: 700 / 1000 [ 70%] (Sampling)
Chain 3: Iteration: 800 / 1000 [ 80%] (Sampling)
Chain 3: Iteration: 900 / 1000 [ 90%] (Sampling)
Chain 3: Iteration: 1000 / 1000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 0.044 seconds (Warm-up)
Chain 3: 0.043 seconds (Sampling)
Chain 3: 0.087 seconds (Total)
Chain 3:
SAMPLING FOR MODEL 'sesame_one_pred_a' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 0 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 1000 [ 0%] (Warmup)
Chain 4: Iteration: 100 / 1000 [ 10%] (Warmup)
Chain 4: Iteration: 200 / 1000 [ 20%] (Warmup)
Chain 4: Iteration: 300 / 1000 [ 30%] (Warmup)
Chain 4: Iteration: 400 / 1000 [ 40%] (Warmup)
Chain 4: Iteration: 500 / 1000 [ 50%] (Warmup)
Chain 4: Iteration: 501 / 1000 [ 50%] (Sampling)
Chain 4: Iteration: 600 / 1000 [ 60%] (Sampling)
Chain 4: Iteration: 700 / 1000 [ 70%] (Sampling)
Chain 4: Iteration: 800 / 1000 [ 80%] (Sampling)
Chain 4: Iteration: 900 / 1000 [ 90%] (Sampling)
Chain 4: Iteration: 1000 / 1000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.048 seconds (Warm-up)
Chain 4: 0.042 seconds (Sampling)
Chain 4: 0.09 seconds (Total)
Chain 4:
Warning message:
In system(paste(CXX, ARGS), ignore.stdout = TRUE, ignore.stderr = TRUE) :
'C:/rtools40/usr/mingw_/bin/g++' not found
> print(sesame_one_pred_a.sf1)
Inference for Stan model: sesame_one_pred_a.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta[1] 0.55 0.00 0.04 0.47 0.52 0.55 0.57 0.62 782 1
beta[2] 0.36 0.00 0.05 0.27 0.33 0.36 0.39 0.45 819 1
sigma 0.38 0.00 0.02 0.35 0.37 0.38 0.40 0.42 1300 1
lp__ 110.19 0.04 1.20 106.95 109.65 110.48 111.08 111.59 909 1
Samples were drawn using NUTS(diag_e) at Sun Dec 06 09:18:11 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
>
> beta.post <- extract(sesame_one_pred_a.sf1, "beta")$beta
> beta.mean1 <- colMeans(beta.post)
>
> ## (sesame_one_pred_b.stan)
> ## lm (y ~ encouraged)
>
> dataList.2 <- list(N=length(y), watched=y,encouraged=encouraged)