$$\textbf{Y}_{t,j} \sim \mathcal{N}(\mu_{t,j}, \sigma^2_j), \quad t=1,\dots,T, \quad j=1,\dots,J$$
$$\mu_{t,j} = \alpha_j + \sum^P_{p=1} \Gamma_{1:J,j,p}\Phi_{1:J,j,p}\textbf{Y}_{t-p,j}$$
$$\alpha_j \sim \mathcal{N}(0, 1000)$$
$$\Gamma_{i,k,p} \sim \mathcal{BERN}(0.5), \quad i=1,\dots,J, \quad k=1,\dots,J, \quad p=1,\dots,P$$
$$(\Phi_{i,k,p} | \Gamma_{i,k,p}) \sim (1 - \Gamma_{i,k,p})\mathcal{N}(0, 0.01) + \Gamma_{i,k,p}\mathcal{N}(0, 10), \quad i=1,\dots,J, \quad k=1,\dots,J, \quad p=1,\dots,P$$
$$\sigma_j \sim \mathcal{HC}(25)$$