全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 MATLAB等数学软件专版
2020-12-17 19:07:50
where ${u_i} = {t_\nu }^{ - 1}\left( {F\left( {{x_i};\nu } \right)} \right)$,
where $t_\nu^{-1}$ is the quantile function of the student distribution with
shape parameter $\nu$.
$$
\tau \left( {{x_i},{x_j}} \right) = 4\int_0^1 {\int_0^1 {C\left( {{u_i},{u_j}} \right)dC\left( {{u_i},{u_j}} \right) - 1} }.
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 19:09:58
$$
\varphi_R(u) = \prod\limits_{i = 1}^n {{\varphi_{\bar w{Z_i}}}} (u)
=  \exp{
   \left(
   \text{i}u\sum\limits_{j = 1}^d \bar\mu_j +
   \sum\limits_{j = 1}^d
   \left(
   \frac{\lambda_j}{2}
   \log{\left(\frac{\gamma}{\upsilon}\right)}
   +
   \log \left(
   \frac{K_{\lambda _j}(\bar\delta_j\sqrt{\upsilon})}{K_{\lambda_j}( \bar\delta_j \sqrt{\gamma})}
   \right)
   \right)
   \right)
   }
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 19:11:15
where, $\gamma  = \bar \alpha _j^2 - \bar \beta _j^2$, $\upsilon  = \bar \alpha _j^2 - {({{\bar \beta }_j} + {\text{i}}u)^2}$,
and $(\bar \alpha_j, \bar \beta_j, \bar \delta_j, \bar \mu_j)$ are the scaled
versions of the parameters $(\alpha_{i}, \beta_{i}, \delta_{i}, \mu_{i})$
as shown in \eqref{eq:portfolio2}. The density may be accurately
approximated by FFT as follows,
$$
{f_R}(r) = \frac{1} {{2\pi }}\int_{ - \infty }^{ + \infty } {{e^{( - \text{i}u r)}}} \varphi_R
(u)\mathrm{d}u \approx \frac{1} {{2\pi }}\int_{ - s}^s {{e^{( - \text{i}u r)}}} \varphi_R
(u)\mathrm{d}u.
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 19:11:53
$$
\begin{gathered}
  {M_{GH(\lambda ,\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu u}}{M_{GIG\left( {\lambda ,\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}}\left( {\frac{{{u^2}}}{2} + \beta u} \right), \hfill \\
   = {e^{\mu u}}{\left( {\frac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2} - {{(\beta  + u)}^2}}}} \right)^{\lambda /2}}\frac{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {{(\beta  + u)}^2}} } \right)}}{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}} \hfill \\
\end{gathered}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 19:13:42
where $M_{GIG}$ represents the moment generating function of the Generalized Inverse
Gaussian which forms the mixing distribution in this variance-mean mixture subclass.
Powers of the MGF, $M_{GH}(u)^p$, only have the representation in \eqref{appendixI:eq:ghypmom}
for $p=1$, which means that GH distributions are not closed under convolution
with the exception of the NIG, and only in the case when the shape and skew parameters
are the same. The MGF of the NIG is,
$$
{M_{NIG(\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu u}}\frac{{{e^{\delta \sqrt {{\alpha ^2} - {\beta ^2}} }}}}{{{e^{\delta \sqrt {{\alpha ^2} - {{(\beta  + u)}^2}} }}}}.
$$
$$
NIG(\alpha ,\beta ,{\delta _1},{\mu _1}) \times...\times NIG(\alpha ,\beta ,{\delta _n},{\mu _n}) = NIG(\alpha ,\beta ,{\delta _1} + ... + {\delta _n},{\mu _1} + ... + {\mu _n}).
$$
$$
{\phi _{GH(\lambda ,\alpha ,\beta ,\delta ,\mu )}}(u) = {e^{\mu \text{i}u}}{\left( {\frac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2} - {{(\beta  + {\text{i}}u)}^2}}}} \right)^{\lambda /2}}\frac{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {{(\beta  + {\text{i}}u)}^2}} } \right)}}{{{K_\lambda }\left( {\delta \sqrt {{\alpha ^2} - {\beta ^2}} } \right)}}.
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 19:14:32
$$
{\phi _{port}}(u) = \exp\Biggl\{\text{i}u \sum\limits_{j = 1}^d \biggl({\bar \mu }_j+ \frac{\lambda _j}{2}\log{\left( {\bar \alpha _j^2 - \bar \beta _j^2} \right)} - \frac{\lambda _j}{2} \log{\left( \bar \alpha _j^2 - ({\bar \beta }_j + {\text{i}}u)^2 \right)} +  \nonumber \\
\log{\left( K_{\lambda_j}\left( {\bar \delta }_j\sqrt{\bar \alpha _j^2 - ({\bar \beta }_j + \text{i}u)^2}\right) \right)} - \log{\left( K_{\lambda _j}\left({\bar \delta}_j \sqrt{\bar \alpha _j^2 - \bar \beta _j^2} \right) \right)} \biggr) \Biggr\}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 21:02:28
$$
\Delta X_{t}^{1} \\ \Delta X_{t}^{2}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 21:29:48
where $\Normal{b}{B}$ denotes the normal distribution with mean $b\in\mathbb{R}$ and variance $B\in\mathbb{R}^+$, and $\varepsilon_t$ and $\eta_t$ are independent.
The log-variance process $\hvec=(\hpar_1,\dots,\hpar_\leny)^\top$ is initialized by $\hpar_0\sim\Normal{\mupar}{\sigmapar^2/(1-\phipar^2)}$.
$\bm X=(\bm x_1^\top,\dots,\bm x_\leny^\top)^\top$ is an $\leny\times\nreg$ matrix containing in its $t$th row the vector of $\nreg$ regressors at time $t$.
The $\nreg$ regression coefficients are collected in $\bm\beta=(\beta_1,\dots,\beta_\nreg)^\top$.
We refer to $\svpars=(\mupar,\phipar,\sigmapar)$ as the SV parameters: $\mupar$ is the level, $\phipar$ is the persistence, and $\sigmapar$ (also called \emph{volvol}) is the standard deviation of the log-variance.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 21:51:16
$$
y_i = x_i^\top \beta_i + u_i
\qquad (i = 1, \dots, n),
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-17 22:39:45
Re-compiling KFAS
-  installing *source* package 'KFAS' ... (335ms)
   ** using staged installation
   ** libs
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  approx.f95 -o approx.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  approxloop.f95 -o approxloop.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  artransform.f95 -o artransform.o
   "C:/rtools40/mingw64/bin/"gcc  -I"D:/softApp/R/include" -DNDEBUG          -O2 -Wall  -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c cdistwrap.c -o cdistwrap.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  covmeanw.f95 -o covmeanw.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filter1step.f95 -o filter1step.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filter1stepnovar.f95 -o filter1stepnovar.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  filtersimfast.f95 -o filtersimfast.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  gloglik.f95 -o gloglik.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  gsmoothall.f95 -o gsmoothall.o
   "C:/rtools40/mingw64/bin/"gcc  -I"D:/softApp/R/include" -DNDEBUG          -O2 -Wall  -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c init.c -o init.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  isample.f95 -o isample.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  isamplefilter.f95 -o isamplefilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfilter.f95 -o kfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfilter2.f95 -o kfilter2.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  kfstheta.f95 -o kfstheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ldl.f95 -o ldl.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ldlssm.f95 -o ldlssm.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  marginalxx.f95 -o marginalxx.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  mvfilter.f95 -o mvfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngfilter.f95 -o ngfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngloglik.f95 -o ngloglik.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ngsmooth.f95 -o ngsmooth.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  predict.f95 -o predict.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  ptheta.f95 -o ptheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  pytheta.f95 -o pytheta.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simfilter.f95 -o simfilter.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simgaussian.f95 -o simgaussian.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  simgaussianuncond.f95 -o simgaussianuncond.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothonestep.f95 -o smoothonestep.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothsim.f95 -o smoothsim.o
   "C:/rtools40/mingw64/bin/"gfortran  -fno-optimize-sibling-calls    -O2  -mfpmath=sse -msse2 -mstackrealign -c  smoothsimfast.f95 -o smoothsimfast.o
   C:/rtools40/mingw64/bin/gcc -shared -s -static-libgcc -o KFAS.dll tmp.def approx.o approxloop.o artransform.o cdistwrap.o covmeanw.o filter1step.o filter1stepnovar.o filtersimfast.o gloglik.o gsmoothall.o init.o isample.o isamplefilter.o kfilter.o kfilter2.o kfstheta.o ldl.o ldlssm.o marginalxx.o mvfilter.o ngfilter.o ngloglik.o ngsmooth.o predict.o ptheta.o pytheta.o simfilter.o simgaussian.o simgaussianuncond.o smoothonestep.o smoothsim.o smoothsimfast.o -LD:/softApp/R/bin/x64 -lRlapack -LD:/softApp/R/bin/x64 -lRblas -lgfortran -lm -lquadmath -lgfortran -lm -lquadmath -LD:/softApp/R/bin/x64 -lR
   installing to C:/Users/ADMINI~1/AppData/Local/Temp/Rtmpo9CCsV/devtools_install_10a44fa971e2/00LOCK-KFAS/00new/KFAS/libs/x64
-  DONE (KFAS)
Writing NAMESPACE
Writing NAMESPACE
-- Building -------------------------------------------------------------------------------- KFAS --
Setting env vars:
* CFLAGS    : -Wall -pedantic -fdiagnostics-color=always
* CXXFLAGS  : -Wall -pedantic -fdiagnostics-color=always
* CXX11FLAGS: -Wall -pedantic -fdiagnostics-color=always
----------------------------------------------------------------------------------------------------
√  checking for file 'E:\devpackage\KFAS/DESCRIPTION' ...
-  preparing 'KFAS':
√  checking DESCRIPTION meta-information ...
-  cleaning src
-  installing the package to build vignettes (820ms)
   creating vignettes ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-18 22:12:03
$$
{{C}}_{t}+{{\left({\frac{P^E}{P}}\right)}}_{t}+\frac{1}{{{R^R}}_{t}}\, {\nu}\, {K}_{t}={{N}}_{t}\, {{\left({\frac{W}{P}}\right)}}_{t}+{{\left({\frac{P^E}{P}}\right)}}_{t}+{{\left({\frac{D^E}{P}}\right)}}_{t}+{\nu}\, {K}_{t-1}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:14:25
$$
y=\gamma \left( \delta x_1^{-\rho} + \left(1-\delta \right) x_2^{-\rho} \right)^{-\frac{\nu}{\rho}},
$$
where $y$ is the output quantity,
$x_1$ and $x_2$ are the input quantities,
and $\gamma$, $\delta$, $\rho$, and $\nu$ are parameters.
Parameter $\gamma \in [0,\infty)$ determines the productivity,
$\delta \in [ 0,1 ]$ determines the optimal distribution of the inputs,
$\rho \in [-1,0) \cup (0,\infty)$ determines the (constant) elasticity of substitution,
which is $\sigma = 1 \left/ \left( 1 + \rho \right) \right.$,
and $\nu \in [0,\infty)$ is equal to the elasticity of scale.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:15:25
The CES function includes three special cases: for $\rho \rightarrow 0$,
$\sigma$ approaches $1$
and the CES turns to the Cobb-Douglas form;
for $\rho \rightarrow \infty$, $\sigma$ approaches $0$ and the CES turns
to the Leontief production function;  
and for $\rho \rightarrow -1$, $\sigma$ approaches infinity
and the CES turns to a linear function
if $\nu$ is equal to 1.
$$
\begin{align}
y = \; & \gamma \left( \sum_{i=1}^n \delta_i x_i^{-\rho} \right)^{-\frac{\nu}{\rho}}
\label{eq:n-ces-plain}\\
& \text{with } \sum_{i=1}^n \delta_i = 1,
\end{align}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:16:45
$$
y = \gamma \left[ \delta \left( \delta_1 x_1^{-\rho_1} + ( 1 - \delta_1 ) x_2^{-\rho_1} \right)^{\rho/\rho_1}
    +  ( 1 - \delta ) \left( \delta_2 x_3^{-\rho_2} + ( 1 - \delta_2 ) x_4^{-\rho_2} \right)^{\rho/\rho_2} \right]^{-\nu/\rho}.
$$
If $\rho_1 = \rho_2 = \rho$,
the four-input nested CES function defined in Equation~\ref{eq:4-ces-nested}
reduces to the plain four-input CES function defined in Equation
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:18:18
In this case,
the parameters of
the four-input nested CES function defined in Equation~\ref{eq:4-ces-nested}
(indicated by the superscript $n$)
and the parameters of
the plain four-input CES function defined in Equation~\ref{eq:n-ces-plain}
(indicated by the superscript $p$)
correspond in the following way:
where $\rho^p = \rho_1^n = \rho_2^n = \rho^n$,
$\delta_1^p = \delta_1^n \; \delta^n$,
$\delta_2^p = ( 1 - \delta_1^n ) \; \delta^n$,
$\delta_3^p = \delta_2^n \; ( 1 - \delta^n )$,
$\delta_4^p = ( 1 - \delta_2^n ) \; ( 1 - \delta^n )$,
$\gamma^p = \gamma^n$,
$\delta_1^n = \delta_1^p / ( \delta_1^p + \delta_2^p )$,
$\delta_2^n = \delta_3^p / ( \delta_3^p + \delta_4^p )$, and
$\delta^n = \delta_1^p + \delta_2^p$.

$$
y = \gamma \left[ \delta \gamma_1^{-\rho} \left( \delta_1 x_1^{-\rho_1} + (1-\delta_1) x_2^{-\rho_1}\right)^{\rho/\rho_1}
+ ( 1 - \delta ) x_3^{-\rho} \right]^{-\nu/\rho}.
$$
However, adding the term $\gamma_1^{-\rho}$ does not increase the flexibility
of this function
as $\gamma_1$ can be arbitrarily normalised to one;
normalising $\gamma_1$ to one
changes $\gamma$ to
$\gamma \left( \delta \gamma_1^{-\rho} + ( 1 - \delta ) \right)^{-( \nu / \rho )}$
and changes $\delta$ to
$\left. \left( \delta \gamma_1^{-\rho} \right) \right/
\left( \delta \gamma_1^{-\rho} + ( 1 - \delta ) \right)$,
but has no effect on the functional form.
Hence, the parameters $\gamma$, $\gamma_1$, and $\delta$
cannot be (jointly) identified in econometric estimations
(see also explanation for the four-input nested CES function
above Equation
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:19:49
approximation of the classical two-input CES production function
that could be estimated by ordinary least-squares techniques.
$$
\begin{align}
\ln y = & \ln \gamma + \nu \; \delta \ln x_1 + \nu
    \left( 1 - \delta \right) \ln x_2
   \label{eq:kmenta}\\
  &- \frac{\rho \, \nu}{2} \;
      \delta \left( 1 - \delta \right) \left( \ln x_1 - \ln x_2 \right)^2
   \nonumber
\end{align}
$$
While \citet{kmenta67} obtained this formula by logarithmising the CES function
and applying a second-order Taylor series expansion to
$\ln \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)$
at the point $\rho = 0$,
the same formula can be obtained
by applying a first-order Taylor series expansion
to the entire logarithmised CES function
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:21:18
$$
\begin{align}
\ln y =& \alpha_0 + \alpha_1 \ln x_1 + \alpha_2 \ln x_2
   \label{eq:kmentaTranslog}\\
   & + \frac{1}{2} \; \beta_{11} \left( \ln x_1 \right)^2
   + \frac{1}{2} \; \beta_{22} \left( \ln x_2 \right)^2
   + \beta_{12} \, \ln x_1 \ln x_2,
   \nonumber
\end{align}
$$
where the two restrictions are
$$
\beta_{12} = - \beta_{11} = - \beta_{22}.
$$
If this is the case,
a simple $t$-test for the coefficient $\beta_{12} = - \beta_{11} = - \beta_{22}$
can be used to check if the Cobb-Douglas functional form is an acceptable
simplification of the Kmenta approximation of the CES function.
$$
\begin{align}
\gamma &= \exp( \alpha_0 )
   \label{eq:kmentaTranslogGamma}\\
\nu &= \alpha_1 + \alpha_2
   \label{eq:kmentaTranslogNu}\\
\delta &= \frac{ \alpha_1 }{ \alpha_1 + \alpha_2 }
   \label{eq:kmentaTranslogDelta}\\
\rho &= \frac{ \beta_{12} \left( \alpha_1 + \alpha_2 \right) }{
   \alpha_1 \cdot \alpha_2 }
   \label{eq:kmentaTranslogRho}
\end{align}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:23:23
For the traditional two-input CES function, these partial derivatives are:$$\begin{align}
\frac{\partial y}{\partial \gamma } =\;&
   e^{\lambda \, t} \, \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)^{-\frac{ \nu }{\rho}}
   \label{eq:derivYGamma}\\
\frac{\partial y}{\partial \lambda } =\;&
    \gamma \; t \; \frac{\partial y}{\partial \gamma }
   \label{eq:derivYLambda}\\
\frac{\partial y}{\partial \delta } =\;&
   -  \gamma \, e^{\lambda \, t} \, \frac{\nu }{ \rho } \left( x_1^{-\rho} - x_2^{-\rho} \right)
   \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)^{-\frac{\nu}{\rho} - 1}
   \label{eq:derivYDelta}\\
\frac{\partial y}{\partial \rho } =\;&
   \gamma \, e^{\lambda \, t} \, \frac{ \nu }{ \rho^2 } \;
   \ln \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)
   \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)^{-\frac{ \nu }{\rho}}
   \label{eq:derivYRho}\\
   & + \gamma \, e^{\lambda \, t} \, \frac{ \nu }{ \rho }
   \left( \delta \ln( x_1 ) x_1^{-\rho} + ( 1 - \delta ) \ln( x_2 ) x_2^{-\rho} \right)
   \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)^{-\frac{\nu}{\rho} -1}
   \nonumber\\
\frac{\partial y}{\partial \nu } =\;&
   - \gamma \, e^{\lambda \, t} \, \frac{ 1 }{ \rho } \;
   \ln \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)
   \left( \delta x_1^{-\rho} + ( 1 - \delta ) x_2^{-\rho} \right)^{-\frac{ \nu }{\rho }}
   \label{eq:derivYNu}
\end{align}
$$

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:27:16
$$
\begin{align}
\frac{\partial y}{\partial \gamma } =\;&
   e^{\lambda \, t} \, x_1^{\nu \, \delta} \; x_2^{\nu \, ( 1 - \delta )}
   \exp \left( - \frac{\rho}{2} \, \nu \, \delta \, ( 1 - \delta )
      \left( \ln x_1 - \ln x_2 \right)^2
   \right)
   \label{eq:derivYGammaApprox}\\
\frac{\partial y}{\partial \delta } =\;&
   \gamma \, e^{\lambda \, t} \, \nu \, \left( \ln x_1 - \ln x_2 \right)
   x_1^{ \nu \, \delta } \; x_2^{ \nu ( 1 - \delta ) }
   \label{eq:derivYDeltaApprox}\\
   & \left( 1 - \frac{ \rho }{ 2 }
      \big[ 1 - 2 \, \delta + \nu \, \delta ( 1 - \delta )
         \left( \ln x_1 - \ln x_2 \right) \big]
      \left( \ln x_1 - \ln x_2 \right)
   \right)
   \nonumber\\
\frac{\partial y}{\partial \rho } =\;&
   \gamma \, e^{\lambda \, t} \, \nu \, \delta \, ( 1 - \delta ) \,
   x_1^{ \nu \, \delta } \; x_2^{ \nu ( 1 - \delta ) }
   \bigg( - \frac{1}{2} \left( \ln x_1 - \ln x_2 \right)^2
   \label{eq:derivYRhoApprox}\\
      & + \frac{\rho}{3} ( 1 - 2 \, \delta ) \left( \ln x_1 - \ln x_2 \right)^3
      + \frac{\rho}{4} \, \nu \, \delta ( 1 - \delta )
         \left( \ln x_1 - \ln x_2 \right)^4
   \bigg)
   \nonumber\\
\frac{\partial y}{\partial \nu } =\;&
   \gamma \, e^{\lambda \, t} \, x_1^{ \nu \, \delta } \; x_2^{ \nu ( 1 - \delta ) }
   \bigg( \delta \ln x_1 + ( 1 - \delta ) \ln x_2
      \label{eq:derivYNuApprox}\\
      & - \frac{\rho}{2} \, \delta ( 1 - \delta )
      \left( \ln x_1 - \ln x_2 \right)^2
      \left[ 1 + \nu
         \left( \delta \ln x_1 + ( 1 - \delta ) \ln x_2 \right)
      \right]
   \bigg)
   \nonumber
\end{align}
$$
If $\rho$ is zero or close to zero,
the partial derivatives with respect to $\lambda$ are calculated
also with Equation~\ref{eq:derivYLambda},
but now $\partial y / \partial \gamma$ is calculated
with Equation
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:32:09
Allen-Uzawa elasticity of substitution
$$
\sigma_{i,j} = \begin{cases}
        (1 - \rho )^{-1}
        & \text{for } i = 1,2; \; j=3 \\
        & \\
        \dfrac{(1-\rho_1)^{-1} - (1-\rho)^{-1}}
        {\delta \left( \dfrac{y}{
        B_1^{-\frac{1}{\rho_1}}}\right)^{1+\rho}}+(1-\rho)^{-1}
        & \text{for } i=1; \; j=2
   \end{cases}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:33:19
Hicks-McFadden elasticity of substitution
$$
\sigma_{i,j} = \begin{cases}
        \dfrac{\dfrac{1}{\theta_i} + \dfrac{1}{\theta_j}}
        {(1-\rho_1) \left( \dfrac{1}{\theta_i} - \dfrac{1}{\theta^*} \right)
        + (1-\rho_2) \left( \dfrac{1}{\theta_j} - \dfrac{1}{\theta} \right)
        + (1-\rho) \left( \dfrac{1}{\theta^*} - \dfrac{1}{\theta} \right) }
        & \text{for } i=1,2; \; j=3 \\
        & \\
        (1-\rho_1)^{-1}
        & \mbox{text } i=1; \; j=2
   \end{cases}
$$
with
$$
\begin{align}
& \theta^* = \delta
            B_1^{\frac{\rho}{\rho_1}} \cdot y^\rho \\
& \theta = (1-\delta) x_3^{-\rho} \cdot y^{\rho} \\
& \theta_1 = \delta \delta_1 x_1^{-\rho_1}
            B_1^{-\frac{\rho_1 - \rho}{\rho_1}}
            \cdot y^{\rho} \\
& \theta_2 = \delta (1 - \delta_1) x_2^{-\rho_1}
            B_1^{-\frac{\rho_1 - \rho}{\rho_1}}
            \cdot y^{\rho} \\
& \theta_3 = \theta
\end{align}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:34:53
$$f_{\delta}\left(\rho\right)=h_{\delta}\left(\rho\right)\,\exp\left(-g_{\delta}\left(\rho\right)\right)
$$


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:37:52
$$
\frac{\partial y}{\partial\nu}=-\gamma \, e^{\lambda \, t} \, \frac{1}{\rho}\,\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\,\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}$$
Now we define the function $f_{\nu}\left(\rho\right)$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:38:24
$$
\begin{eqnarray}
f_{\nu}\left(\rho\right) & = & \frac{1}{\rho}\,\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\,\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}\\
& = & \frac{1}{\rho}\,\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\,\exp\left(-\frac{\nu}{\rho}\,\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\right)\end{eqnarray}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:39:05
so that we can approximate $\partial y/\partial\nu$ by using the
first-order Taylor series approximation of $f_{\nu}\left(\rho\right)$:
$$
\begin{eqnarray}
\frac{\partial y}{\partial\nu} & = & -\gamma \, e^{\lambda \, t} \, f_{\nu}\left(\rho\right)\\
& \approx & -\gamma \, e^{\lambda \, t} \, \left(f_{\nu}\left(0\right)+\rho f_{\nu}'\left(0\right)\right)\end{eqnarray}$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:39:44
Now we define the helper function $g_{\nu}\left(\rho\right)$
$$\begin{eqnarray}
g_{\nu}\left(\rho\right) & = & \frac{1}{\rho}\,\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\\
& = & \frac{1}{\rho}\,\ln\left(g\left(\rho\right)\right)\end{eqnarray}$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:40:19
with first and second derivative$$\begin{eqnarray}
g_{\nu}'\left(\rho\right) & = & \frac{\rho\frac{g'\left(\rho\right)}{g\left(\rho\right)}-\ln\left(g\left(\rho\right)\right)}{\rho^{2}}\\
& = & \frac{1}{\rho}\,\frac{g'\left(\rho\right)}{g\left(\rho\right)}-\frac{\ln\left(g\left(\rho\right)\right)}{\rho^{2}}\\
g_{\nu}''\left(\rho\right) & = & -\frac{1}{\rho^{2}}\,\frac{g'\left(\rho\right)}{g\left(\rho\right)}+\frac{1}{\rho}\,\frac{g''\left(\rho\right)}{g\left(\rho\right)}-\frac{1}{\rho}\,\frac{\left(g'\left(\rho\right)\right)^{2}}{\left(g\left(\rho\right)\right)^{2}}+2\frac{\ln\left(g\left(\rho\right)\right)}{\rho^{3}}-\frac{1}{\rho^{2}}\frac{g'\left(\rho\right)}{g\left(\rho\right)}\\
& = & \frac{-2\rho\,\frac{g'\left(\rho\right)}{g\left(\rho\right)}+\rho^{2}\,\frac{g''\left(\rho\right)}{g\left(\rho\right)}-\rho^{2}\,\frac{\left(g'\left(\rho\right)\right)^{2}}{\left(g\left(\rho\right)\right)^{2}}+2\ln\left(g\left(\rho\right)\right)}{\rho^{3}}\end{eqnarray}$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:41:15
and use the function $f\left(\rho\right)$ defined above so that$$
f_{\nu}\left(\rho\right)=g_{\nu}\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)$$
and$$\begin{eqnarray}
f_{\nu}'\left(\rho\right) & = & g_{\nu}'\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)+g_{\nu}\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)\, f'\left(\rho\right)\end{eqnarray}$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:44:12
Now we can calculate the limits of $g_{\nu}\left(\rho\right)$, $g_{\nu}'\left(\rho\right)$,
and $g_{\nu}''\left(\rho\right)$ for $\rho\rightarrow0$ by
$$\begin{eqnarray}
g_{\nu}\left(0\right) & = & \lim_{\rho\rightarrow0}g_{\nu}\left(\rho\right)\\
& = & \lim_{\rho\rightarrow0}\frac{\ln\left(g\left(\rho\right)\right)}{\rho}\\
& = & \lim_{\rho\rightarrow0}\frac{\frac{g'\left(\rho\right)}{g\left(\rho\right)}}{1}\\
& = & -\delta\,\ln x_{1}-\left(1-\delta\right)\,\ln x_{2}\end{eqnarray}$$


$$\begin{eqnarray}
g_{\nu}'\left(0\right) & = & \lim_{\rho\rightarrow0}g_{\nu}'\left(\rho\right)\\
& = & \lim_{\rho\rightarrow0}\left(\frac{1}{\rho}\,\frac{g'\left(\rho\right)}{g\left(\rho\right)}-\frac{\ln\left(g\left(\rho\right)\right)}{\rho^{2}}\right)\\
& = & \lim_{\rho\rightarrow0}\frac{\rho\,\frac{g'\left(\rho\right)}{g\left(\rho\right)}-\ln\left(g\left(\rho\right)\right)}{\rho^{2}}\\
& = & \lim_{\rho\rightarrow0}\frac{\frac{g'\left(\rho\right)}{g\left(\rho\right)}+\rho\,\frac{g''\left(\rho\right)g\left(\rho\right)-\left(g'\left(\rho\right)\right)^{2}}{\left(g\left(\rho\right)\right)^{2}}-\frac{g'\left(\rho\right)}{g\left(\rho\right)}}{2\rho}\\
& = & \lim_{\rho\rightarrow0}\frac{g''\left(\rho\right)g\left(\rho\right)-\left(g'\left(\rho\right)\right)^{2}}{2\left(g\left(\rho\right)\right)^{2}}\\
& = & \frac{g''\left(0\right)g\left(0\right)-\left(g'\left(0\right)\right)^{2}}{2\left(g\left(0\right)\right)^{2}}\\
& = & \frac{1}{2}\left(\delta\left(\ln x_{1}\right)^{2}+\left(1-\delta\right)\left(\ln x_{2}\right)^{2}-\left(-\delta\,\ln x_{1}-\left(1-\delta\right)\,\ln x_{2}\right)^{2}\right)\\
& = & \frac{1}{2}\biggl(\delta\left(\ln x_{1}\right)^{2}+\left(1-\delta\right)\left(\ln x_{2}\right)^{2}-\delta^{2}\left(\ln x_{1}\right)^{2}\\
&  & -2\delta\left(1-\delta\right)\,\ln x_{1}\ln x_{2}-\left(1-\delta\right)^{2}\left(\ln x_{2}\right)^{2}\biggr)\nonumber \\
& = & \frac{1}{2}\biggl(\left(\delta-\delta^{2}\right)\left(\ln x_{1}\right)^{2}+\left(\left(1-\delta\right)-\left(1-\delta\right)^{2}\right)\left(\ln x_{2}\right)^{2}\\
&  & -2\delta\left(1-\delta\right)\,\ln x_{1}\ln x_{2}\biggr)\nonumber \\
& = & \frac{1}{2}\biggl(\delta\left(1-\delta\right)\left(\ln x_{1}\right)^{2}+\left(1-\delta\right)\left(1-\left(1-\delta\right)\right)\left(\ln x_{2}\right)^{2}\\
&  & -2\delta\left(1-\delta\right)\,\ln x_{1}\ln x_{2}\biggr)\nonumber \\
& = & \frac{\delta\left(1-\delta\right)}{2}\left(\left(\ln x_{1}\right)^{2}-2\,\ln x_{1}\ln x_{2}+\left(\ln x_{2}\right)^{2}\right)\\
& = & \frac{\delta\left(1-\delta\right)}{2}\left(\ln x_{1}-\ln x_{2}\right)^{2}\end{eqnarray}
$$



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-12-19 09:45:50
so that we can calculate the limit of $f_{\nu}\left(\rho\right)$and
$f_{\nu}'\left(\rho\right)$ for $\rho\rightarrow0$ by

$$
\begin{eqnarray}
f_{\nu}\left(0\right) & = & \lim_{\rho\rightarrow0}f_{\nu}\left(\rho\right)\\
& = & \lim_{\rho\rightarrow0}\left(g_{\nu}\left(\rho\right)\,\exp\left(f\left(\rho\right)\right)\right)\\
& = & \lim_{\rho\rightarrow0}g_{\nu}\left(\rho\right)\,\lim_{\rho\rightarrow0}\exp\left(f\left(\rho\right)\right)\\
& = & \lim_{\rho\rightarrow0}g_{\nu}\left(\rho\right)\,\exp\left(\lim_{\rho\rightarrow0}f\left(\rho\right)\right)\\
& = & g_{\nu}\left(0\right)\,\exp\left(f\left(0\right)\right)\\
& = & \left(-\delta\,\ln x_{1}-\left(1-\delta\right)\,\ln x_{2}\right)\exp\left(\nu\left(\delta\,\ln x_{1}+\left(1-\delta\right)\,\ln x_{2}\right)\right)\\
& = & -\left(\delta\,\ln x_{1}+\left(1-\delta\right)\,\ln x_{2}\right)x_{1}^{\nu\delta}x_{2}^{\nu\left(1-\delta\right)}\end{eqnarray}
$$
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群