$$
\begin{eqnarray}
\frac{\partial y}{\partial\rho} & = & \gamma \, e^{\lambda \, t} \, \frac{\nu}{\rho^{2}}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\\
& & +\gamma \, e^{\lambda \, t} \, \frac{\nu}{\rho}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\left(\frac{\nu}{\rho}+1\right)}\left(\delta\, x_{1}^{-\rho}\ln x_{1}+\left(1-\delta\right)\, x_{2}^{-\rho}\ln x_{2}\right)\nonumber \\
& = & \gamma \, e^{\lambda \, t} \, \nu \, \left(\frac{1}{\rho^{2}}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\right.\\
& & \left.+\frac{1}{\rho}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\left(\frac{\nu}{\rho}+1\right)}\left(\delta\, x_{1}^{-\rho}\ln x_{1}+\left(1-\delta\right)\, x_{2}^{-\rho}\ln x_{2}\right)\right)\nonumber \end{eqnarray}
$$
Now we define the function $f_{\rho}\left(\rho\right)$ $$\begin{eqnarray}
f_{\rho}\left(\rho\right) & = & \frac{1}{\rho^{2}}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\frac{\nu}{\rho}}\ln\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)\\
& & +\frac{1}{\rho}\left(\delta\, x_{1}^{-\rho}+\left(1-\delta\right)\, x_{2}^{-\rho}\right)^{-\left(\frac{\nu}{\rho}+1\right)}\left(\delta\, x_{1}^{-\rho}\ln x_{1}+\left(1-\delta\right)\, x_{2}^{-\rho}\ln x_{2}\right)\nonumber \end{eqnarray}$$