Planning Algorithms 
Author: Steven M. lavalle 
Publisher: Cambridge University Press 
ISBN: 0-521-86205-1 
Page count: 826 
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Contents
Preface ix
I Introductory Material 1
1 Introduction 3
1.1 Planning to Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivational Examples and Applications . . . . . . . . . . . . . . . 5
1.3 Basic Ingredients of Planning . . . . . . . . . . . . . . . . . . . . . 17
1.4 Algorithms, Planners, and Plans . . . . . . . . . . . . . . . . . . . . 19
1.5 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Discrete Planning 27
2.1 Introduction to Discrete Feasible Planning . . . . . . . . . . . . . . 28
2.2 Searching for Feasible Plans . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Discrete Optimal Planning . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Using Logic to Formulate Discrete Planning . . . . . . . . . . . . . 57
2.5 Logic-Based Planning Methods . . . . . . . . . . . . . . . . . . . . 63
II Motion Planning 77
3 Geometric Representations and Transformations 81
3.1 Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 Rigid-Body Transformations . . . . . . . . . . . . . . . . . . . . . . 92
3.3 Transforming Kinematic Chains of Bodies . . . . . . . . . . . . . . 100
3.4 Transforming Kinematic Trees . . . . . . . . . . . . . . . . . . . . . 112
3.5 Nonrigid Transformations . . . . . . . . . . . . . . . . . . . . . . . 120
4 The Configuration Space 127
4.1 Basic Topological Concepts . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Defining the Configuration Space . . . . . . . . . . . . . . . . . . . 145
4.3 Configuration Space Obstacles . . . . . . . . . . . . . . . . . . . . . 155
4.4 Closed Kinematic Chains . . . . . . . . . . . . . . . . . . . . . . . . 167
5 Sampling-Based Motion Planning 185
5.1 Distance and Volume in C-Space . . . . . . . . . . . . . . . . . . . 186
5.2 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.4 Incremental Sampling and Searching . . . . . . . . . . . . . . . . . 217
5.5 Rapidly Exploring Dense Trees . . . . . . . . . . . . . . . . . . . . 228
5.6 Roadmap Methods for Multiple Queries . . . . . . . . . . . . . . . . 237
6 Combinatorial Motion Planning 249
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.2 Polygonal Obstacle Regions . . . . . . . . . . . . . . . . . . . . . . 251
6.3 Cell Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.4 Computational Algebraic Geometry . . . . . . . . . . . . . . . . . . 280
6.5 Complexity of Motion Planning . . . . . . . . . . . . . . . . . . . . 298
7 Extensions of Basic Motion Planning 311
7.1 Time-Varying Problems . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2 Multiple Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
7.3 Mixing Discrete and Continuous Spaces . . . . . . . . . . . . . . . . 327
7.4 Planning for Closed Kinematic Chains . . . . . . . . . . . . . . . . 337
7.5 Folding Problems in Robotics and Biology . . . . . . . . . . . . . . 347
7.6 Coverage Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.7 Optimal Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 357
8 Feedback Motion Planning 369
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
8.2 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 371
8.3 Vector Fields and Integral Curves . . . . . . . . . . . . . . . . . . . 381
8.4 Complete Methods for Continuous Spaces . . . . . . . . . . . . . . 398
8.5 Sampling-Based Methods for Continuous Spaces . . . . . . . . . . . 412
III Decision-Theoretic Planning 433
9 Basic Decision Theory 437
9.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 438
9.2 A Game Against Nature . . . . . . . . . . . . . . . . . . . . . . . . 446
9.3 Two-Player Zero-Sum Games . . . . . . . . . . . . . . . . . . . . . 459
9.4 Nonzero-Sum Games . . . . . . . . . . . . . . . . . . . . . . . . . . 468
9.5 Decision Theory Under Scrutiny . . . . . . . . . . . . . . . . . . . . 477
10 Sequential Decision Theory 495
10.1 Introducing Sequential Games Against Nature . . . . . . . . . . . . 496
10.2 Algorithms for Computing Feedback Plans . . . . . . . . . . . . . . 508
10.3 Infinite-Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . 522
10.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 527
10.5 Sequential Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 536
10.6 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 551
11 Sensors and Information Spaces 559
11.1 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 561
11.2 Derived Information Spaces . . . . . . . . . . . . . . . . . . . . . . 571
11.3 Examples for Discrete State Spaces . . . . . . . . . . . . . . . . . . 581
11.4 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 589
11.5 Examples for Continuous State Spaces . . . . . . . . . . . . . . . . 598
11.6 Computing Probabilistic Information States . . . . . . . . . . . . . 614
11.7 Information Spaces in Game Theory . . . . . . . . . . . . . . . . . 619
12 Planning Under Sensing Uncertainty 633
12.1 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
12.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
12.3 Environment Uncertainty and Mapping . . . . . . . . . . . . . . . . 655
12.4 Visibility-Based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . 684
12.5 Manipulation Planning with Sensing Uncertainty . . . . . . . . . . 691
IV Planning Under Differential Constraints 711
13 Differential Models 715
13.1 Velocity Constraints on the Configuration Space . . . . . . . . . . . 716
13.2 Phase Space Representation of Dynamical Systems . . . . . . . . . 735
13.3 Basic Newton-Euler Mechanics . . . . . . . . . . . . . . . . . . . . . 745
13.4 Advanced Mechanics Concepts . . . . . . . . . . . . . . . . . . . . . 762
13.5 Multiple Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . 780
14 Sampling-Based Planning Under Differential Constraints 787
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
14.2 Reachability and Completeness . . . . . . . . . . . . . . . . . . . . 798
14.3 Sampling-Based Motion Planning Revisited . . . . . . . . . . . . . 810
14.4 Incremental Sampling and Searching Methods . . . . . . . . . . . . 820
14.5 Feedback Planning Under Differential Constraints . . . . . . . . . . 837
14.6 Decoupled Planning Approaches . . . . . . . . . . . . . . . . . . . . 841
14.7 Gradient-Based Trajectory Optimization . . . . . . . . . . . . . . . 855
15 System Theory and Analytical Techniques 861
15.1 Basic System Properties . . . . . . . . . . . . . . . . . . . . . . . . 862
15.2 Continuous-Time Dynamic Programming . . . . . . . . . . . . . . . 870
15.3 Optimal Paths for Some Wheeled Vehicles . . . . . . . . . . . . . . 880
15.4 Nonholonomic System Theory . . . . . . . . . . . . . . . . . . . . . 888
15.5 Steering Methods for Nonholonomic Systems . . . . . . . . . . . . . 910