摘要翻译:
引入有限可加测度的线性空间,讨论了随机时钟和无界随机禀赋过程下的消费期望效用最优问题。通过这种方法,我们建立了一类效用最大化问题的存在唯一性,其中包括经典的最终财富或消费问题,以及依赖于随机时域或多个消费实例的效用最大化问题。作为一个例子,我们显式地处理了一个消费流的对数效用最大化问题,其中一个Ornstein-Uhlenbeck过程的局部时间充当一个随机时钟。
---
英文标题:
《Utility Maximization with a Stochastic Clock and an Unbounded Random
Endowment》
---
作者:
Gordan Zitkovic
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We introduce a linear space of finitely additive measures to treat the problem of optimal expected utility from consumption under a stochastic clock and an unbounded random endowment process. In this way we establish existence and uniqueness for a large class of utility maximization problems including the classical ones of terminal wealth or consumption, as well as the problems depending on a random time-horizon or multiple consumption instances. As an example we treat explicitly the problem of maximizing the logarithmic utility of a consumption stream, where the local time of an Ornstein-Uhlenbeck process acts as a stochastic clock.
---
PDF链接:
https://arxiv.org/pdf/0705.4487