摘要翻译:
我们报告了在湍流空气射流中弦的横向波动的测量。脉动拖曳力在不同波数下激发出谐波模态。这种简单的机械探针可以测量特定尺度下的流动激励,在空间和时间上平均:这是一种尺度分辨的全局测量。我们还测量了与弦运动相关的耗散,并考虑了涨落与耗散的比值(FDR)。在一种探索性的方法中,我们研究了通过FDR定义的{IT有效温度}的概念。我们将我们的观测结果与湍流中温度的其他定义进行了比较。从Kolmogorov(1941)的理论出发,我们导出了涨落谱的期望指数-11/3。这个简单的模型和我们的实验结果在波数范围内是一致的,雷诺数可达74000\leq\Re\leq\170000$)。
---
英文标题:
《Fluctuation-dissipation relation on a Melde string in a turbulent flow,
considerations on a "dynamical temperature"》
---
作者:
Vincent Grenard (Phys-ENS), Nicolas Garnier (Phys-ENS), Antoine Naert
(Phys-ENS)
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Instrumentation and Detectors 仪器仪表和探测器
分类描述:Instrumentation and Detectors for research in natural science, including optical, molecular, atomic, nuclear and particle physics instrumentation and the associated electronics, services, infrastructure and control equipment.
用于自然科学研究的仪器和探测器,包括光学、分子、原子、核和粒子物理仪器和相关的电子学、服务、基础设施和控制设备。
--
---
英文摘要:
We report on measurements of the transverse fluctuations of a string in a turbulent air jet flow. Harmonic modes are excited by the fluctuating drag force, at different wave-numbers. This simple mechanical probe makes it possible to measure excitations of the flow at specific scales, averaged over space and time: it is a scale-resolved, global measurement. We also measure the dissipation associated to the string motion, and we consider the ratio of the fluctuations over dissipation (FDR). In an exploratory approach, we investigate the concept of {\it effective temperature} defined through the FDR. We compare our observations with other definitions of temperature in turbulence. From the theory of Kolmogorov (1941), we derive the exponent -11/3 expected for the spectrum of the fluctuations. This simple model and our experimental results are in good agreement, over the range of wave-numbers, and Reynolds number accessible ($74000 \leq Re \leq 170000$).
---
PDF链接:
https://arxiv.org/pdf/704.0325