摘要翻译:
我们研究了三维$\pm J$Ising模型[随机交换概率$p(J_{xy})=p\delta(J_{xy}-J)+(1-p)\delta(J_{xy}+J)$]在顺磁相和铁磁相之间的过渡线上的临界行为,该过渡线从$p=1$延伸到$p=p_n约0.767$处的多晶(Nishimori)点。通过有限尺度的Monte Carlo模拟分析,我们提供了有力的数值证据,证明沿铁磁跃迁线的临界行为与三维随机稀释Ising模型具有相同的普适性。我们得到了临界指数的结果$nu=0.682(3)$和$eta=0.036(2)$,与随机稀释Ising模型跃迁时的估计$nu=0.683(2)$和$eta=0.036(1)$相一致。
---
英文标题:
《The 3D +-J Ising model at the ferromagnetic transition line》
---
作者:
Martin Hasenbusch, Francesco Parisen Toldin, Andrea Pelissetto, Ettore
Vicari
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study the critical behavior of the three-dimensional $\pm J$ Ising model [with a random-exchange probability $P(J_{xy}) = p \delta(J_{xy} - J) + (1-p) \delta(J_{xy} + J)$] at the transition line between the paramagnetic and ferromagnetic phase, which extends from $p=1$ to a multicritical (Nishimori) point at $p=p_N\approx 0.767$. By a finite-size scaling analysis of Monte Carlo simulations at various values of $p$ in the region $p_N<p<1$, we provide strong numerical evidence that the critical behavior along the ferromagnetic transition line belongs to the same universality class as the three-dimensional randomly-dilute Ising model. We obtain the results $\nu=0.682(3)$ and $\eta=0.036(2)$ for the critical exponents, which are consistent with the estimates $\nu=0.683(2)$ and $\eta=0.036(1)$ at the transition of randomly-dilute Ising models.
---
PDF链接:
https://arxiv.org/pdf/704.0427