摘要翻译:
梯度网络可以用来建模复杂网络的主导结构。以往的工作主要集中在随机梯度网络上。本文研究了具有Erd\h{o}s-r\'enyi结构的无标度衬底网络上干扰最小化的梯度网络。我们引入了结构相关性,并使用蒙特卡罗优化方案来有效地减少网络上发生的拥塞。这种优化改变了梯度网络的度分布和其他结构性质。这些结果对实际网络系统中的传输和其他动力学过程具有一定的指导意义。
---
英文标题:
《Optimization in Gradient Networks》
---
作者:
Natali Gulbahce
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Gradient networks can be used to model the dominant structure of complex networks. Previous works have focused on random gradient networks. Here we study gradient networks that minimize jamming on substrate networks with scale-free and Erd\H{o}s-R\'enyi structure. We introduce structural correlations and strongly reduce congestion occurring on the network by using a Monte Carlo optimization scheme. This optimization alters the degree distribution and other structural properties of the resulting gradient networks. These results are expected to be relevant for transport and other dynamical processes in real network systems.
---
PDF链接:
https://arxiv.org/pdf/704.1144