摘要翻译:
利用最近提出的一种优化算法,对任意给定的无标度分布,明确地设计了最优可同步(未加权)网络。我们探索优化过程如何影响度-度相关性,并观察到一个普遍的不协调趋势。然而,我们表明同步性和不协调性之间并不是一一对应的。另一方面,我们研究了最优非同步网络的性质,即拓扑结构使同步状态的稳定范围最小的网络。由此产生的“悲观网络”具有高度协调的弦状结构。我们还导出了控制网络同步性的拉普拉斯特征值比的严格下界,这有助于理解度相关对网络同步性的影响。
---
英文标题:
《Network synchronization: Optimal and Pessimal Scale-Free Topologies》
---
作者:
Luca Donetti, Pablo I. Hurtado and Miguel A. Munoz
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.
---
PDF链接:
https://arxiv.org/pdf/710.4886