摘要翻译:
我们从解析(或微分几何)的观点来处理Koll\'ar的内射性定理。更准确地说,我们给出了一个包含Koll\'ar型上同调内射性定理的曲率条件。我们的主要定理是针对紧致K\\“Ahler流形而建立的,但证明使用了Zariski开集上的调和形式空间,该空间具有适当的完全K\\”Ahler度量。我们既不需要覆盖技巧,也不需要去模糊化,也不需要勒雷的光谱序列。
---
英文标题:
《A transcendental approach to Koll\'ar's injectivity theorem》
---
作者:
Osamu Fujino
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We treat Koll\'ar's injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Koll\'ar type cohomology injectivity theorems. Our main theorem is formulated for a compact K\"ahler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete K\"ahler metric. We need neither covering tricks, desingularizations, nor Leray's spectral sequence.
---
PDF链接:
https://arxiv.org/pdf/0704.0073