全部版块 我的主页
论坛 经济学人 二区 外文文献专区
227 0
2022-03-02
摘要翻译:
假设我们是以六个尖点为奇点的不可约性的变种。设W是W的不可约分量之一,用M_4表示亏格4光滑曲线的模空间,W的模映射是从W到M_4的有理映射,它将对应于平面曲线D的W的一般点送到使D的归一化曲线参数化的M_4点。W的模数定义为W的像相对于模映射的维数。我们知道这个数字最多等于七。本文证明了S的两个不可约分量的模数都精确等于7。
---
英文标题:
《On the number of moduli of plane sextics with six cusps》
---
作者:
Concettina Galati
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let S be the variety of irreducible sextics with six cusps as singularities. Let W be one of irreducible components of W. Denoting by M_4 the space of moduli of smooth curves of genus 4, the moduli map of W is the rational map from W to M_4 sending the general point of W, corresponding to a plane curve D, to the point of M_4 parametrizing the normalization curve of D. The number of moduli of W is, by definition the dimension of the image of W with respect to the moduli map. We know that this number is at most equal to seven. In this paper we prove that both irreducible components of S have number of moduli exactly equal to seven.
---
PDF链接:
https://arxiv.org/pdf/0704.0622
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群