摘要翻译:
在一定的正性假设下,研究了有理连通纤维从子流形到其周围簇的扩张性质。给出复射影流形X上的有理曲线族,在适当的条件下,导出了X和Y上的有理连通纤维结构。这些结果的应用包括纤维型Mori收缩的扩张定理和Y具有射影丛或二次纤维结构时的分类定理。
---
英文标题:
《Ample subvarieties and rationally connected fibrations》
---
作者:
Mauro C. Beltrametti, Tommaso de Fernex, Antonio Lanteri
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Under some positivity assumptions, extension properties of rationally connected fibrations from a submanifold to its ambient variety are studied. Given a family of rational curves on a complex projective manifold X inducing a covering family on a submanifold Y with ample normal bundle in X, the main results relate, under suitable conditions, the associated rational connected fiber structures on X and on Y. Applications of these results include an extension theorem for Mori contractions of fiber type and a classification theorem in the case Y has a structure of projective bundle or quadric fibration.
---
PDF链接:
https://arxiv.org/pdf/0704.0661