摘要翻译:
我们定义了有限域上的积分Borel-Moore同调理论,称为算术同调,以及Kato同调的积分形式。这两种类型的群都是有限生成的,并处于一个长的精确序列中,具有更高的零循环群。
---
英文标题:
《Arithmetic homology and an integral version of Katos conjecture》
---
作者:
Thomas Geisser
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We define an integral Borel-Moore homology theory over finite fields, called arithmetic homology, and an integral version of Kato homology. Both types of groups are expected to be finitely generated, and sit in a long exact sequence with higher Chow groups of zero-cycles.
---
PDF链接:
https://arxiv.org/pdf/0704.1192