摘要翻译:
设$X$是具有良好约简的PEL类型的Shimura变种在素$P$处的积分模型,它与约简群$G$相关联。对于$G$群的$\MathBB{Z}_p$reprentation,可以联想到两种束:特殊纤维上的晶体束和普通纤维上的局部常数束。我们建立了这两种滑轮上同调的比较。
---
英文标题:
《Comparaison entre cohomologie cristalline et cohomologie \'etale
$p$-adique sur certaines vari\'et\'es de Shimura》
---
作者:
Sandra Rozensztajn (IRMA)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $X$ be an integral model at a prime $p$ of a Shimura variety of PEL type having good reduction, associated to a reductive group $G$. To $\mathbb{Z}_p$ reprsententations of the group $G$ can be associated two kinds of sheaves : crystals on the special fiber of $X$, and locally constant \'etale sheaves on the generic fiber. We establish a comparison between the cohomology of these two kinds of sheaves.
---
PDF链接:
https://arxiv.org/pdf/0704.1347