摘要翻译:
设$X$是一个紧致复流形,考虑$\phi:\Mathcal{X}\到$X$的b$的一个小变形,Dolbeault上同调群$h^q(X_t,\omega_{X_t}^p)$的维数可能在此解离下发生变化。本文以$T$为参数,通过研究一类在$H^q(X,\omega_x^p)$中变形的障碍物来研究这种现象,并得到了障碍物的计算公式。
---
英文标题:
《The Jumping Phenomenon of Hodge Numbers》
---
作者:
Xuanming Ye
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
Let $X$ be a compact complex manifold, consider a small deformation $\phi: \mathcal{X} \to B$ of $X$, the dimension of the Dolbeault cohomology groups $H^q(X_t,\Omega_{X_t}^p)$ may vary under this defromation. This paper will study such phenomenons by studying the obstructions to deform a class in $H^q(X,\Omega_X^p)$ with the parameter $t$ and get the formula for the obstructions.
---
PDF链接:
https://arxiv.org/pdf/0704.1977