摘要翻译:
设X是光滑复射影簇,设$J:U\到X$是Zariski开子集的浸没,设V是权n的Hodge结构在U上的变式。则IH^K(X,J_*V)携带权K+n的纯Hodge结构,而H^K(U,V)携带权$\GE K+n$的混合Hodge结构。本文证明了自然映射$Ih^k(X,j_*V)\to H^k(U,V)$的像是这个混合Hodge结构的最小权部分。证明采用Saito的混合Hodge模理论。
---
英文标题:
《Lowest Weights in Cohomology of Variations of Hodge Structure》
---
作者:
Chris Peters
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
Let X be a smooth complex projective variety, let $j:U\into X$ an immersion of a Zariski open subset, and let V be a variation of Hodge structure of weight n over U. Then IH^k(X, j_*V) is known to carry a pure Hodge structure of weight k+n, while H^k(U,V) carries a mixed Hodge structure of weight $\ge k+n$. In this note it is shown that the image of the natural map $IH^k(X,j_*V) \to H^k(U,V)$ is the lowest weight part of this mixed Hodge structure. The proof uses Saito's theory of mixed Hodge modules.
---
PDF链接:
https://arxiv.org/pdf/0708.0130