摘要翻译:
这一工作致力于一种新的完全代数方法来研究Arakelov几何,它不要求所考虑的变化是一般光滑的或射影的。为了建立这样一种方法,我们发展了广义环和方案理论,它包括经典环和方案以及诸如F_1(“单元场”)、Z_\infty(“实数”)、T(热带数)等“奇异”对象,从而提供了研究这些对象的系统方法。这种广义环和方案的理论发展到代数K-理论、交理论和Chern类的构造。然后证明了Q上代数簇的Arakelov模型的存在性,并将我们的一般结果应用于此类模型。
---
英文标题:
《New Approach to Arakelov Geometry》
---
作者:
Nikolai Durov (Max Planck Institute for Mathematics, St.Petersburg
State University)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesn't require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized rings and schemes, which include classical rings and schemes together with "exotic" objects such as F_1 ("field with one element"), Z_\infty ("real integers"), T (tropical numbers) etc., thus providing a systematic way of studying such objects. This theory of generalized rings and schemes is developed up to construction of algebraic K-theory, intersection theory and Chern classes. Then existence of Arakelov models of algebraic varieties over Q is shown, and our general results are applied to such models.
---
PDF链接:
https://arxiv.org/pdf/0704.2030