摘要翻译:
我们计算了形式群律,它表示了代数环面的N\'eron模型在一个温和的分支阿贝尔扩张中分裂的有理上的完备性。作为证明的工具,我们定义并给出了计算形式群律的Weil限制和形式群律的固定部分关于有限群作用的模拟的判据。
---
英文标题:
《Formal completions of N\'eron models for algebraic tori》
---
作者:
Oleg Demchenko, Alexander Gurevich, Xavier Xarles
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We calculate the formal group law which represents the completion of the N\'eron model of an algebraic torus over the rationals that splits in a tamely ramified abelian extension. As a tools in the proof, we define and give criterions to compute the Weil restriction of a formal group law and the analog of the fixed part of a formal group law with respect to the action of a (finite) group.
---
PDF链接:
https://arxiv.org/pdf/0704.2578