全部版块 我的主页
论坛 经济学人 二区 外文文献专区
497 0
2022-03-02
摘要翻译:
递归神经网络(RNNs)已被证明在一维序列学习任务中是有效的,如语音和在线手写识别。使RNN适合于此类任务的一些特性,例如对输入扭曲的鲁棒性,以及访问上下文信息的能力,在多维领域也是可取的。然而,到目前为止,还没有一种直接的方法将RNNs应用于具有一个以上时空维度的数据。本文介绍了多维递归神经网络(MDRNS),从而扩展了RNNs在视觉、视频处理、医学成像等领域的潜在适用性,同时避免了困扰其他多维模型的缩放问题。给出了两个图像分割任务的实验结果。
---
英文标题:
《Multi-Dimensional Recurrent Neural Networks》
---
作者:
Alex Graves, Santiago Fernandez, Juergen Schmidhuber
---
最新提交年份:
2007
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--

---
英文摘要:
  Recurrent neural networks (RNNs) have proved effective at one dimensional sequence learning tasks, such as speech and online handwriting recognition. Some of the properties that make RNNs suitable for such tasks, for example robustness to input warping, and the ability to access contextual information, are also desirable in multidimensional domains. However, there has so far been no direct way of applying RNNs to data with more than one spatio-temporal dimension. This paper introduces multi-dimensional recurrent neural networks (MDRNNs), thereby extending the potential applicability of RNNs to vision, video processing, medical imaging and many other areas, while avoiding the scaling problems that have plagued other multi-dimensional models. Experimental results are provided for two image segmentation tasks.
---
PDF链接:
https://arxiv.org/pdf/0705.2011
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群