摘要翻译:
本文将概率神经网络(PNN)与图像和数据处理技术相结合,实现了一种通用的自动树叶识别算法。提取了12个树叶特征,并将其正交化为构成PNN输入向量的5个主变量。用1800片树叶对PNN进行训练,对32种植物进行分类,准确率大于90%。与其他方法相比,该算法是一种精确的
人工智能方法,执行速度快,易于实现。
---
英文标题:
《A Leaf Recognition Algorithm for Plant Classification Using
Probabilistic Neural Network》
---
作者:
Stephen Gang Wu, Forrest Sheng Bao, Eric You Xu, Yu-Xuan Wang, Yi-Fan
Chang and Qiao-Liang Xiang
---
最新提交年份:
2007
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this paper, we employ Probabilistic Neural Network (PNN) with image and data processing techniques to implement a general purpose automated leaf recognition algorithm. 12 leaf features are extracted and orthogonalized into 5 principal variables which consist the input vector of the PNN. The PNN is trained by 1800 leaves to classify 32 kinds of plants with an accuracy greater than 90%. Compared with other approaches, our algorithm is an accurate artificial intelligence approach which is fast in execution and easy in implementation.
---
PDF链接:
https://arxiv.org/pdf/0707.4289