摘要翻译:
本文阐述了半并行深度
神经网络(SPDNN)的思想,证明了混合网络的收敛性非常接近集合中的最佳网络,泛化性能优于所有父网络。
---
英文标题:
《Semi-Parallel Deep Neural Networks (SPDNN), Convergence and
  Generalization》
---
作者:
Shabab Bazrafkan, Peter Corcoran
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
  The Semi-Parallel Deep Neural Network (SPDNN) idea is explained in this article and it has been shown that the convergence of the mixed network is very close to the best network in the set and the generalization of SPDNN is better than all the parent networks. 
---
PDF链接:
https://arxiv.org/pdf/1711.01963