全部版块 我的主页
论坛 经济学人 二区 外文文献专区
483 0
2022-03-03
摘要翻译:
设$\{p_i\}_{1\leq i\leq r}$和$\{q_i\}_{1\leq i\leq r}$是域$k$上的两个Brauer Severi曲面(即圆锥曲线)集合。我们证明了$P_i的$in$br(k)$生成的子组与$q_i的$\iff$\pi P_i$生成的子组是相同的,与$\pi q_i$是双生的。此外,在本例中,$\pi p_i$和$\pi q_i$表示$m(k)$中的同一个类,$k$-varietics的Grothendieck环。如果$char(k)=0$,则相反。上面的一些含义也适用于一般的诺以太基础方案。
---
英文标题:
《Products of Brauer Severi surfaces》
---
作者:
Amit Hogadi
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let $\{P_i\}_{1 \leq i \leq r}$ and $\{Q_i\}_{1 \leq i \leq r}$ be two collections of Brauer Severi surfaces (resp. conics) over a field $k$. We show that the subgroup generated by the $P_i's$ in $Br(k)$ is the same as the subgroup generated by the $Q_i's$ \iff $\Pi P_i $ is birational to $\Pi Q_i$. Moreover in this case $\Pi P_i$ and $\Pi Q_i$ represent the same class in $M(k)$, the Grothendieck ring of $k$-varieties. The converse holds if $char(k)=0$. Some of the above implications also hold over a general noetherian base scheme.
---
PDF链接:
https://arxiv.org/pdf/0706.3447
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群