摘要翻译:
我们考虑一维随机游动在半直线$x\ge0$上的润湿,在原点$x=0$处的短程势中。我们明确地证明了猝灭化学无序的存在是如何影响钉扎-脱钉转变点的。对于小的无序,我们发展了一种微扰技术,它使我们能够明确地计算钉扎跃迁的平均温度(能量)。对于强无序,我们用数值方法和重整化群方法计算了跃迁点。我们的考虑是基于以下思想:随机电位可以被看作周期$n$在极限$n\to\infty$内的周期电位。该方法的优点在于能够对模型中的所有空间自由度进行精确积分,并将初始问题简化为对角系数和非对角系数不变的特殊非厄米随机矩阵的特征值和本征函数的分析。我们表明,即使对于强无序,在衬底无序的随机实现的系综中,随机游动的平均钉扎点的移动与预平均(即退火)玻尔兹曼权重的系统的钉扎点的移动是不可区分的。
---
英文标题:
《Wetting transition on a one-dimensional disorder》
---
作者:
D.M. Gangardt, S.K. Nechaev
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Disordered Systems and Neural Networks        无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
  We consider wetting of a one-dimensional random walk on a half-line $x\ge 0$ in a short-ranged potential located at the origin $x=0$. We demonstrate explicitly how the presence of a quenched chemical disorder affects the pinning-depinning transition point. For small disorders we develop a perturbative technique which enables us to compute explicitly the averaged temperature (energy) of the pinning transition. For strong disorder we compute the transition point both numerically and using the renormalization group approach. Our consideration is based on the following idea: the random potential can be viewed as a periodic potential with the period $n$ in the limit $n\to\infty$. The advantage of our approach stems from the ability to integrate exactly over all spatial degrees of freedoms in the model and to reduce the initial problem to the analysis of eigenvalues and eigenfunctions of some special non-Hermitian random matrix with disorder--dependent diagonal and constant off-diagonal coefficients. We show that even for strong disorder the shift of the averaged pinning point of the random walk in the ensemble of random realizations of substrate disorder is indistinguishable from the pinning point of the system with preaveraged (i.e. annealed) Boltzmann weight. 
---
PDF链接:
https://arxiv.org/pdf/704.2893