摘要翻译:
本文提出了两种对长记忆时间序列进行线性预测的方法。第一种方法是截断Wiener-Kolmogorov预测器,将观测量限制在最后的$k$项,这是实践中唯一可用的值。我们导出了当$k$趋于$+\infty$时,均方误差的渐近性态。相比之下,第二种方法是非参数的。本文用AR($k$)模型拟合长记忆时间序列,并研究了该模型的误差。
---
英文标题:
《Linear Prediction of Long-Memory Processes: Asymptotic Results on
Mean-squared Errors》
---
作者:
Fanny Godet (LMJL)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We present two approaches for linear prediction of long-memory time series. The first approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to the last $k$ terms, which are the only available values in practice. We derive the asymptotic behaviour of the mean-squared error as $k$ tends to $ + \infty$. By contrast, the second approach is non-parametric. An AR($k$) model is fitted to the long-memory time series and we study the error that arises in this misspecified model.
---
PDF链接:
https://arxiv.org/pdf/705.1927