摘要翻译:
给出了非负Kodaira维数光滑射影曲面S$上所有具有常几何亏格G\geq2$和超椭圆正规化的曲线族的存在性限制。特别地,我们证明了一个Reider-like结果,它的证明是“无向量丛”,并依赖于形变理论和有理曲线的弯曲与断裂。我们也给出了这类曲线族的例子。
---
英文标题:
《Remarks on families of singular curves with hyperelliptic normalizations》
---
作者:
Andreas Leopold Knutsen
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We give restrictions on the existence of families of curves on smooth projective surfaces $S$ of nonnegative Kodaira dimension all having constant geometric genus $g \geq 2$ and hyperelliptic normalizations. In particular, we prove a Reider-like result whose proof is ``vector bundle-free'' and relies on deformation theory and bending-and-breaking of rational curves in $\Sym^2(S)$. We also give examples of families of such curves. 
---
PDF链接:
https://arxiv.org/pdf/0705.0906