摘要翻译:
本文研究了概率线性判别分析(PLDA)在电话对话说话人日记中的应用。我们介绍了在PLDA模型下使用变分贝叶斯(VB)进行推理的方法来建模说话人日记化中的分段I-向量。为了避免VB迭代中的局部最优解,引入了确定性退火(DA)算法。我们将我们提出的系统与一个应用K均值聚类对分段I-向量的主成分分析(PCA)系数进行聚类的著名系统进行了比较。我们使用美国国家标准与技术研究所(NIST)2008年说话人识别评估(SRE)的汇总信道电话数据作为测试集,以评估所提出的系统的性能。与基线系统相比,我们在腹泻错误率(DER)方面实现了约20%的相对改善。
---
英文标题:
《PLDA-Based Diarization of Telephone Conversations》
---
作者:
Ahmet E. Bulut, Hakan Demir, Yusuf Ziya Isik, Hakan Erdogan
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
This paper investigates the application of the probabilistic linear discriminant analysis (PLDA) to speaker diarization of telephone conversations. We introduce using a variational Bayes (VB) approach for inference under a PLDA model for modeling segmental i-vectors in speaker diarization. Deterministic annealing (DA) algorithm is imposed in order to avoid local optimal solutions in VB iterations. We compare our proposed system with a well-known system that applies k-means clustering on principal component analysis (PCA) coefficients of segmental i-vectors. We used summed channel telephone data from the National Institute of Standards and Technology (NIST) 2008 Speaker Recognition Evaluation (SRE) as the test set in order to evaluate the performance of the proposed system. We achieve about 20% relative improvement in Diarization Error Rate (DER) compared to the baseline system.
---
PDF链接:
https://arxiv.org/pdf/1710.00116