摘要翻译:
给定一个射影曲面和一个对平面的泛型投影,其分支曲线补的辫状单曲因式分解(因而是辫状单曲型)是最重要的拓扑不变量之一,在变形上是稳定的。从这个因式分解中,可以计算出C^2或CP^2中分支曲线补的基本群。本文证明了这些群对于Hirzebruch曲面F_{1,(a,b)}是几乎可解的。即-它们是一个可解群的推广,加强了可退化曲面上的猜想。
---
英文标题:
《On fundamental groups related to the Hirzebruch surface F_1》
---
作者:
Michael Friedman, Mina Teicher
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given a projective surface and a generic projection to the plane, the braid monodromy factorization (and thus, the braid monodromy type) of the complement of its branch curve is one of the most important topological invariants, stable on deformations. From this factorization, one can compute the fundamental group of the complement of the branch curve, either in C^2 or in CP^2. In this article, we show that these groups, for the Hirzebruch surface F_{1,(a,b)}, are almost-solvable. That is - they are an extension of a solvable group, which strengthen the conjecture on degeneratable surfaces.
---
PDF链接:
https://arxiv.org/pdf/0706.1680