摘要翻译:
我们考虑了一个开放系统中的单文件扩散,该系统含有两种粒子A,B$。在边界处,我们假设不同的储层密度驱动系统进入非平衡稳态。作为模型,我们使用一维两分量简单对称排斥过程,它具有两个不同的跳跃速率$D_a,D_b$和开边界。为了研究流体力学极限下的动力学,我们导出了粗粒颗粒密度的耦合非线性扩散方程组。用数值积分的方法分析了初始密度剖面的松弛。得到了自扩散系数的精确解析表达式,证明了自扩散系数是与长度相关的,并得到了定常解的精确解析表达式。在稳态下,随着系统边界间总的外密度梯度的变化,我们发现了一个不连续的边界诱导相变。在一个边界处形成了一个边界层,在该边界层内电流逆着局部密度梯度流动。一般而言,边界层宽度和体密度分布不依赖于两个跳跃速率。然而,在相变线处,各个密度分布强烈地依赖于比值$d_a/d_b$。动态蒙特卡罗模拟证实了我们的理论预测。
---
英文标题:
《Phase transition in the two-component symmetric exclusion process with
open boundaries》
---
作者:
A. Brzank and G.M. Sch\"utz
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider single-file diffusion in an open system with two species $A,B$ of particles. At the boundaries we assume different reservoir densities which drive the system into a non-equilibrium steady state. As a model we use an one-dimensional two-component simple symmetric exclusion process with two different hopping rates $D_A,D_B$ and open boundaries. For investigating the dynamics in the hydrodynamic limit we derive a system of coupled non-linear diffusion equations for the coarse-grained particle densities. The relaxation of the initial density profile is analyzed by numerical integration. Exact analytical expressions are obtained for the self-diffusion coefficients, which turns out to be length-dependent, and for the stationary solution. In the steady state we find a discontinuous boundary-induced phase transition as the total exterior density gradient between the system boundaries is varied. At one boundary a boundary layer develops inside which the current flows against the local density gradient. Generically the width of the boundary layer and the bulk density profiles do not depend on the two hopping rates. At the phase transition line, however, the individual density profiles depend strongly on the ratio $D_A/D_B$. Dynamic Monte Carlo simulation confirm our theoretical predictions.
---
PDF链接:
https://arxiv.org/pdf/705.0596