摘要翻译:
我们证明刚性上同调可以计算为一个类似于晶体位置的位置的上同调。Berthelot设计刚性上同调作为晶体上同调和Monsky-Washnitzer上同调的一般推广。不幸的是,与前者不同的是,该理论的功能并不是内在的。我们在另一个地方定义了泛函上依附于代数簇的“过收敛位”,并证明了在这个环位上有限表示的模范畴与该簇上的过收敛等晶范畴是等价的。我们在这里表明它们的上同调也是重合的。
---
英文标题:
《The Overconvergent Site II. Cohomology》
---
作者:
Bernard Le Stum (IRMAR)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that rigid cohomology can be computed as the cohomology of a site analogous to the crystalline site. Berthelot designed rigid cohomology as a common generalization of crystalline and Monsky-Washnitzer cohomology. Unfortunately, unlike the former, the functoriality of the theory is not built-in. We defined somewhere else the "overconvergent site" which is functorially attached to an algebraic variety and proved that the category of modules of finite presentation on this ringed site is equivalent to the category of over- convergent isocrystals on the variety. We show here that their cohomology also coincides.
---
PDF链接:
https://arxiv.org/pdf/0707.1809