全部版块 我的主页
论坛 经济学人 二区 外文文献专区
326 0
2022-03-03
摘要翻译:
本文提出了一种多Agent方法来解决向工程专业人员推荐培训课程的问题。推荐系统是作为概念验证而建立的,仅限于电气和机械工程学科。通过用户建模和调查数据收集,利用智能代理实现了协同过滤推荐。这些代理协同工作,推荐有意义的培训课程并更新课程信息。系统使用课程的用户配置文件和关键字对课程进行排名。课程的排序准确率达到90%,同时使用agent实现了灵活性,该agent使用数据挖掘技术从网站中自动检索信息。这种推荐方式具有可伸缩性和适应性。可以使用聚类和记录用户反馈进行进一步的改进。
---
英文标题:
《An Intelligent Multi-Agent Recommender System for Human Capacity
  Building》
---
作者:
Vukosi N. Marivate, George Ssali and Tshilidzi Marwala
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Human-Computer Interaction        人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--

---
英文摘要:
  This paper presents a Multi-Agent approach to the problem of recommending training courses to engineering professionals. The recommendation system is built as a proof of concept and limited to the electrical and mechanical engineering disciplines. Through user modelling and data collection from a survey, collaborative filtering recommendation is implemented using intelligent agents. The agents work together in recommending meaningful training courses and updating the course information. The system uses a users profile and keywords from courses to rank courses. A ranking accuracy for courses of 90% is achieved while flexibility is achieved using an agent that retrieves information autonomously using data mining techniques from websites. This manner of recommendation is scalable and adaptable. Further improvements can be made using clustering and recording user feedback.
---
PDF链接:
https://arxiv.org/pdf/0806.2216
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群