摘要翻译:
本文提出了一种新的计算宏的域无关算法。我们的算法对给定的状态集“动态”计算宏,不需要先前学习或推断的信息,也不需要先前的领域知识。利用该算法定义了新的与领域无关的可处理的经典规划类,包括\emph{Blocksworld-arm}和\emph{Towers of Hanoi}。
---
英文标题:
《On-the-fly Macros》
---
作者:
Hubie Chen, Omer Gimenez
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We present a domain-independent algorithm that computes macros in a novel way. Our algorithm computes macros "on-the-fly" for a given set of states and does not require previously learned or inferred information, nor prior domain knowledge. The algorithm is used to define new domain-independent tractable classes of classical planning that are proved to include \emph{Blocksworld-arm} and \emph{Towers of Hanoi}.
---
PDF链接:
https://arxiv.org/pdf/0810.1186