摘要翻译:
本文研究了连续时间的非零和Dynkin对策,它是一个关于停止时间的两人非合作对策。我们证明了对于一般随机过程,它有一个Nash平衡点。作为一个应用,我们用效用最大化方法研究了美式博弈未定权益的定价问题。
---
英文标题:
《The Continuous Time Nonzero-sum Dynkin Game Problem and Application in
Game Options》
---
作者:
Said Hamadene and Jianfeng Zhang
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
In this paper we study the nonzero-sum Dynkin game in continuous time which is a two player non-cooperative game on stopping times. We show that it has a Nash equilibrium point for general stochastic processes. As an application, we consider the problem of pricing American game contingent claims by the utility maximization approach.
---
PDF链接:
https://arxiv.org/pdf/0810.5698