全部版块 我的主页
论坛 经济学人 二区 外文文献专区
450 0
2022-03-03
摘要翻译:
压缩空气储能(CAES)适用于大规模储能,有助于提高风电在电力系统中的渗透率。CAES设备由压缩机、膨胀机、洞室和电动机/发电机组组成。目前用于CAES的洞室模型要么是精确但高度非线性的,要么是线性但不精确的。高度非线性的洞室模型不能直接应用于电力系统优化问题。在这两部分系列的第一篇论文中,提出了一个精确的CAES双线性洞室模型。将洞室中的充放电过程划分为若干个虚态,然后利用热力学第一定律和理想气体定律导出了洞室模型,即这些过程中温度和压力变化的模型。此后,考虑了洞室内空气与洞室壁面之间的传热,并将其纳入洞室模型中。通过消除几个可忽略的项,该模型简化为具有多个(单)时间步长的CAES双线性(线性)模型。通过与一个精确的非线性模型的比较,验证了所提出的洞室模型的准确性。
---
英文标题:
《Compressed Air Energy Storage-Part I: An Accurate Bi-linear Cavern Model》
---
作者:
Junpeng Zhan, Osama Aslam Ansari, and C. Y. Chung
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Compressed air energy storage (CAES) is suitable for large-scale energy storage and can help to increase the penetration of wind power in power systems. A CAES plant consists of compressors, expanders, caverns, and a motor/generator set. Currently used cavern models for CAES are either accurate but highly non-linear or linear but inaccurate. Highly non-linear cavern models cannot be directly utilized in power system optimization problems. In this regard, an accurate bi-linear cavern model for CAES is proposed in this first paper of a two-part series. The charging and discharging processes in a cavern are divided into several virtual states and then the first law of thermodynamics and ideal gas law are used to derive a cavern model, i.e., model for the variation of temperature and pressure in these processes. Thereafter, the heat transfer between the air in the cavern and the cavern wall is considered and integrated into the cavern model. By subsequently eliminating several negligible terms, the cavern model reduces to a bi-linear (linear) model for CAES with multiple (single) time steps. The accuracy of the proposed cavern model is verified via comparison with an accurate non-linear model.
---
PDF链接:
https://arxiv.org/pdf/1709.08272
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群