全部版块 我的主页
论坛 经济学人 二区 外文文献专区
452 0
2022-03-03
摘要翻译:
Foster和Vohra的显著结果是一系列论文的起点,这些论文表明,使用一些通用的随机预测算法和预测相关的检查规则,可以在没有先验知识的情况下学习任何结果序列。我们证明,对于所有计算效率高的基于结果预测的检查规则类,这一性质是违反的。此外,我们提出了一种概率算法,它以接近于一个具有子序列的a序列的概率生成,同时错误地校准了所有部分弱可计算的随机预测算法。每个随机化算法不可学习的子序列。根据Dawid的前序框架,我们考虑了部分递归随机化算法。
---
英文标题:
《On Sequences with Non-Learnable Subsequences》
---
作者:
Vladimir V. V'yugin
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  The remarkable results of Foster and Vohra was a starting point for a series of papers which show that any sequence of outcomes can be learned (with no prior knowledge) using some universal randomized forecasting algorithm and forecast-dependent checking rules. We show that for the class of all computationally efficient outcome-forecast-based checking rules, this property is violated. Moreover, we present a probabilistic algorithm generating with probability close to one a sequence with a subsequence which simultaneously miscalibrates all partially weakly computable randomized forecasting algorithms. %subsequences non-learnable by each randomized algorithm.   According to the Dawid's prequential framework we consider partial recursive randomized algorithms.
---
PDF链接:
https://arxiv.org/pdf/0806.4341
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群